این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 29 آذر 1404
Journal of Research in Medical Sciences
، جلد ۱۶، شماره ۲، صفحات ۰-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Detection and classification of cardiac ischemia using vectorcardiogram signal via neural network
چکیده انگلیسی مقاله
BACKGROUND: Various techniques are used in diagnosing cardiac diseases. The electrocardiogram is one of these tools in common use. In this study vectorcardiogram ) VCG ( signals are used as a tool for detection of cardiac ischemia. METHODS: VCG signals used in this study were obtained form 60 patients suspected to have ischemia disease and 10 normal candidates. Verification of the ischemia had done by the cardiologist during strain test by the evaluation of electrocardiogram (ECG) records and patient's clinical history. The recorder device was Cardiax digital recorder system. The VCG signals were recorded in Frank lead configuration system. RESULTS: Extracted ischemia VCG signals have been configured with 22 features. Feature dimensionalities were reduced by the use of Independent Components Analysis and Principal Component Analysis tools. Results obtained from strain test indicated that among 60 subjects, 50 had negative results and 10 had positive results. Ischemia detection of neural network using VCG parameters indicates 86% accuracy. Classification result on neural network using ECG ischemia detection parameters is 73% accurate. Accumulative evaluation including VCG analysis and strain test indicates 90% consistency. CONCLUSIONS: Regarding the obtained results in this study, VCG has higher accuracy than ECG, so that in cases which ECG signal cannot provide certain diagnosis of existence or non-existence of ischemia, VCG signal can help in a wider range. We suggest the use of VCG as an auxiliary low cost tool in ischemia detection. KEYWORDS: Vectorcardiography, Myocardial Ischemia, Neural Networks.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
علی رضا مهری دهنوی | ali reza mehri dehnavi
department of medical physics and engineering, school of medical, isfahan university of medical sciences, isfahan, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی اصفهان (Isfahan university of medical sciences)
ایمان فرح آبادی | iman farahabadi
department of medical physics and engineering, school of medical, isfahan university of medical sciences, isfahan, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی اصفهان (Isfahan university of medical sciences)
حسین ربانی | hossain rabbani
department of medical physics and engineering, school of medical, isfahan university of medical sciences, isfahan, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی اصفهان (Isfahan university of medical sciences)
امین فرح آبادی | amin farahabadi
department of medical physics and engineering, school of medical, isfahan university of medical sciences, isfahan, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی اصفهان (Isfahan university of medical sciences)
محمد پارسا محجوب | mohamad parsa mahjoob
school of medicine, jahrom university of medical sciences, jahrom, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی جهرم (Jahrom university of medical sciences)
ناصر رجبی دهنوی | nasser rajabi dehnavi
saee hospital, isfahan university of medical sciences, isfahan, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی اصفهان (Isfahan university of medical sciences)
نشانی اینترنتی
http://jrms.mui.ac.ir/index.php/jrms/article/view/5452
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات