این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مهندسی بیوسیستم ایران، جلد ۴۹، شماره ۳، صفحات ۳۹۵-۴۰۸

عنوان فارسی بررسی امکان استفاده از شبکه حسگر بیسیم (WSN) و پردازش تصویر در دیده بانی و تشخیص به موقع آفت مگس سفید گلخانه
چکیده فارسی مقاله مدیریت تولید محصولات گلخانه­ای نیازمند دانش کنترل بسیاری از عوامل محیطی ، تغذیه گیاهی و مبارزه با آفات و بیماری­های گیاهی است. یکی از مهمترین فعالیت­ها در فرآیند تولید محصولات گلخانه­ای شناخت و مبارزه با آفات می­باشد. از جمله روش‌های اثر بخشی سموم و کاهش میزان مصرف آنها خصوصاً در مورد سموم کنترل کننده آفات حشره­ای، پیش آگاهی و اطلاع از تراکم جمعیتی آفات است. فناوری شبکه‌های حسگر بیسیم (WSN) از جمله فناوری‌های نوینی است که به منظور حس کردن محیط و جمع آوری و انتقال اطلاعات به سمت کاربر یا ایستگاه مرکزی برای مشاهده و عکس العمل مناسب با رخداد یا پدیده ای بکار برده می‌شوند.در تحقیق حاضر، امکان استفاده از WSN در دیده بانی و تشخیص به موقع آفت مگس سفید گلخانه و تهیه و ترسیم نقشه آلودگی گلخانه مورد بررسی قرار گرفت. برای این منظور تعداد 3750 تصویر از 15 تله چسبی نصب شده در گلخانه­ ای با محصول طالبی در مرکز تحقیقات و آموزش جهاد کشاورزی اصفهان  که به مگس سفید آلوده شده بودند تهیه و به صورت خودکار با استفاده از  WSN و به صورت بیسیم به رایانه واقع در فاصله 900 متری از گلخانه انتقال می یافت. تصاویر رنگی تله های چسبی که به کمک 15 دوربین تصویر برداری تهیه شدند با استفاده از نرم افزار متلب به تصاویر خاکستری تبدیل شده و بعد از بخش بندی توسط الگوریتم ماشین بردار پشتیبان ( SVM ) و بر اساس ویژگی های تصاویر، به دو دسته تصاویر دارای آفت مگس سفید و فاقد مگس سفید طبقه بندی شدند. پس از شناسایی آفت مگس سفید، تعداد آفات تصاویر شمارش شده و با توجه به تعداد آنها با استفاده از نرم افزار ArcMap10.2  نقشه آلودگی گلخانه ترسیم گردید. با ارزیابی سامانه نتایج نشان داد که دقت الگوریتم SVM برای طبقه بندی تصاویر تله های چسبی برابر 73/97 درصد است و میانگین مقادیر شاخص های آماری ماتریس اغتشاش برای 15 تله چسبی شامل حساسیت، صحت، اختصاصی بودن و دقت طبقه بندی به ترتیب 46/98، 31/86، 08/99 و 72/97 درصد می باشد. میانگین دقت کلی سامانه در تشخیص و شمارش تعداد مگسهای سفید به دام افتاده در تله های چسبی 71/97 درصد می باشد. محاسبه ریشه میانگین مربعات خطا (RMSE) در برآورد تعداد مگس سفید به روش پردازش تصویر و شمارش مستقیم بین 1 تا 03/5 متغیر بود. لذا استفاده از این سامانه برای تشخیص و ردیابی و شمارش تعداد مگس های سفید به دام افتاده مناسب است و می توان با ترسیم نقشه آلودگی گلخانه برنامه ریزی مناسب جهت مبارزه با آفت مذکور انجام داد.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Investigating the Possibility of Using the Wireless Sensor Network (WSN) and image processing in an early detection and diagnosis of the pest of Greenhouse White fly
چکیده انگلیسی مقاله Managing the production of greenhouse products requires knowledge of controlling many environmental factors and plant nutrition and fight against pests and plant diseases. Recognition pests and fight against them is one of the most important activities in the process of production of greenhouse products. Pre-knowledge of the demographic density of insect pests is one of the effective methods of pesticides and reduce their levels of use, especially for insect pest control toxins. Wireless Sensor Networking Technologies (WSN) is one of the new technologies used to sense the environment and collect and transmit information to the user or the central station to view and respond appropriately to an occurrence or phenomenon. In this study, the use of WSN in monitoring, timely diagnosis of greenhouse white flies, design and mapping of greenhouse contamination was investigated. For this goal, 3750 images of 15 sticky traps with white flies that attached to Melon greenhouse in Isfahan Agricultural Jihad Research Center were provide and transmitted online using a WSN to a computer located at a distance of 900 meters from the greenhouse. The color images of the sticky traps are acquired by using 15 digital cameras were converted to gray colored images using MATLAB software, then after image classification with Support Vector Machine (SVM) classifier based on their features, are divided into two categories of images: whiteflies affected image and whiteflies unaffected image. After identification of the white flies, number of pests was counted and infection maps of Greenhouse with ArcMap10.2 software was drawn up. Assessment of the system showed that accuracy of SVM algorithm for categorizing images of sticky traps was 97.73%, and the average values of statistic parameters of the Confusion matrix for 15 traps including sensitivity, accuracy, specificity and classification accuracy were 98.46%, 83.31%, 99.08% and 97.72% respectively. The overall accuracy of the system for detection and counting Greenhouse whitefly pests is 97.71%. The average root mean square error (RMSE) in estimating of the number of white flight by image processing and direct counting was between 1 and 5.03. Therefore, the system is suitable for detecting and tracing and counting the number of trapped white flies, and it is possible to design appropriate greenhouse poisoning plans to fight this pest.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله محسن دانشمند وزیری |
دانشجوی دکترا، گروه مهندسی مکانیک ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

علی رجبی‌پور |
استاد، گروه مهندسی مکانیک ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

محمود امید |
استاد، گروه مهندسی مکانیک ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران


نشانی اینترنتی https://ijbse.ut.ac.ir/article_68260_eb57491f3091c69789c09b7f4e1ad05b.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1228/article-1228-1022233.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات