این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
مدیریت سلامت
، جلد ۲۱، شماره ۷۴، صفحات ۵۱-۶۴
عنوان فارسی
مدل سازی ترکیبی پیش بینی تقاضای گردشگری پزشکی داخلی شهر تهران
چکیده فارسی مقاله
مقدمه:.یکی از مهمترین رویدادها در صنعت گردشگری هر کشور، میزان تقاضا برای یک محصول یا مقصد گردشگری و پیش بینی درست آن است. اما باید توجه داشت که فواصل و انحرافاتی بین مقادیر واقعی و پیش بینی وجود دارد. استفاده از روشهای علمی و نوین در امر پیش بینی، باعث خواهد شد که نتایج حاصله به مراتب بیش از یک تخمین عینی به حقیقت نزدیک شوند که مقاله حاضر نیز همین هدف را در حوزه گردشگری پزشکی دنبال میکند. روش ها: در مرحله اول عوامل موثر بر تقاضای گردشگری پزشکی داخلی با استفاده از تکمیل پرسش نامه های مربوط به روش دلفی فازی و دیمتل فازی توسط 31 نفر از خبرگان آشنا به این حوزه و پردازش توسط نرم افزار MATLAB2017aشناسایی شدند و پس از مشخص شدن تابع تقاضا و جمع آوری اطلاعات ماهیانه هر یک از عوامل موثر در بازه زمانی سال های 1381 تا 1394، سه مدل پیش بینی رگرسیون، شبکه عصبی فازی و الگوریتم SVR به صورت مجزا و ترکیبی برای این تابع در نرم افزار MATLAB اجرا و خطای پیش بینی هریک، اندازه گیری و با هم مقایسه شد. یافته ها: نتایج پژوهش حاضر نشان داد که تابع تقاضای گردشگری پزشکی داخلی شامل: عوامل اقتصادی (درآمد و ثروت افراد )، قیمت خدمات و هزینه زندگی در مقصد، قیمت تاسیسات اقامتی، وجود آلودگی هوا، قیمت محصولات جایگزین (سفر خارجی)، تعداد مراکز پزشکی، بیمارستانهاو آزمایشگاهها است. نتیجه گیری: رویکرد ترکیبی رگرسیون چندگانه و الگوریتم SVR پیشنهادی نیز می تواند پیش بینی بهتری نسبت به سایر روش ها در خصوص پیش بینی گردشگری پزشکی داخلی داشته باشد. بنابراین، پیشنهاد می شودبه منظور کاهش میزان خطای پیش بینی جهت انجام برنامه ریزی های اصولی در حوزه تقاضای گردشگری پزشکی داخلی شهر تهران از این تابع تقاضا و مدل پیش بینی استفاده شود. واژه های کلیدی: شبکه عصبی فازی، الگوریتمSVR، پیش بینی تقاضای گردشگری پزشکی داخلی، تهران، مدل سازی
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Hybrid modeling for forecasting domestic medical tourism demand in Tehran
چکیده انگلیسی مقاله
Introduction: One of the most important events in the tourism industry of each country is the demand for a product or destination and its true prediction of tourism. It should be noted that there are distances and deviations between actual values and predictions. The use of modern scientific and forecasting methods will make the results far more than an objective estimate and closer to the truth; this article pursues the same goal in the field of medical tourism. Methods: In the first step, factors affecting the demand for domestic medical tourism in Tehran were identified by 31 experts using Fuzzy Delphi and Dematel Fuzzy methods. The factors were then processed by MATLAB2017a software. After determining the demand function, and collecting monthly data of each effective factor from 2001 to 2015, three regression prediction models, a fuzzy neural network, and SVR algorithm were implemented using MATLAB software to measure and compare forecast errors. Results: The demand function for domestic medical tourism included: economic factors (individual income and wealth), service prices and cost of living in the destination, the cost of accommodation facilities, air pollution, and the price of alternative products (foreign travel), the number of medical centers, hospitals and laboratories. Conclusion: The proposed hybrid approach for regression and SVR algorithm can make a better prediction compared with the other methods of forecasting domestic medical tourism. Therefore, it is recommended to use the demand function and forecasting model to lower the forecast error while planning for domestic medical tourism demand in Tehran.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
محمدرضا فرزین | Mohammadreza Farzin
Allameh Tabatabai University ,Teharan, Iran
دانشیار گروه مدیریت گردشگری، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران
امیر افسر | Amir Afsar
, Tarbiyat modares University, Teharan.Iran
دانشکده مدیریت، دانشگاه تربیت مدرس، تهران، ایران
علیرضا دبیر | Alireza Dabir
, Allameh Tabatabai University, Teharan.Iran
دانشگاه علامه طباطبایی، تهران،
ابتهال زندی | Ebtehal Zandi
, Allameh Tabatabai University,Teharan.Iran
دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی تهران،
نشانی اینترنتی
http://jha.iums.ac.ir/browse.php?a_code=A-10-2412-2&slc_lang=fa&sid=1
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/52/article-52-1133250.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
عمومی
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات