این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۷، شماره ۱، صفحات ۱-۱۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Pedestrian Detection in Infrared Outdoor Images Based on Atmospheric Situation Estimation
چکیده انگلیسی مقاله
Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric situations. In this paper an efficient method is proposed for detecting pedestrians in outdoor thermal images that adapts to variable atmospheric situations. In the first step, the type of atmospheric situation is estimated based on the global features of the thermal image. Then, for each situation, a relevant algorithm is performed for pedestrian detection. To do this, thermal images are divided into three classes of atmospheric situations: a) fine such as sunny weather, b) bad such as rainy and hazy weather, c) hot such as hot summer days where pedestrians are darker than background. Then 2-Dimensional Double Density Dual Tree Discrete Wavelet Transform (2D DD DT DWT) in three levels is acquired from input images and the energy of low frequency coefficients in third level is calculated as the discriminating feature for atmospheric situation identification. Feed-forward neural network (FFNN) classifier is trained by this feature vector to determine the category of atmospheric situation. Finally, a predetermined algorithm that is relevant to the category of atmospheric situation is applied for pedestrian detection. The proposed method in pedestrian detection has high performance so that the accuracy of pedestrian detection in two popular databases is more than 99%.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
Seyed M. Ghazali |
Electrical &Computer Engineering Department, Babol Noshirvani University, Babol, Iran.
Y. Baleghi |
Electrical &Computer Engineering Department, Babol Noshirvani University, Babol, Iran.
نشانی اینترنتی
http://jad.shahroodut.ac.ir/article_1129_29177da6a4114c80f435168ecaeb3446.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/480/article-480-1136281.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات