این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 29 آذر 1404
فیزیک زمین و فضا
، جلد ۴۴، شماره ۴، صفحات ۲۹-۳۹
عنوان فارسی
Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
چکیده فارسی مقاله
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L
1
-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L
1
-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that projects the problem onto a Krylov subspace with a significantly reduced dimension. The model matrix of the projected system inherits the ill-conditioning of the original matrix, but the spectrum of the projected system accurately captures only a portion of the full spectrum. Equipped with the singular value decomposition of the projected system matrix, the solution of the projected problem is expressed using a filtered singular value expansion. This expansion depends on a regularization parameter which is determined using the method of Generalized Cross Validation (GCV), but here it is used for the truncated spectrum. This new technique, Truncated GCV (TGCV), is more effective compared with the standard GCV method. Numerical results using a synthetic example and real data demonstrate the efficiency of the presented algorithm.
کلیدواژههای فارسی مقاله
Magnetic survey، Sparse inversion، Golub-Kahan bidiagonalization، Regularization parameter estimation، Truncated generalized cross validation،
عنوان انگلیسی
Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
چکیده انگلیسی مقاله
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L
1
-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L
1
-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that projects the problem onto a Krylov subspace with a significantly reduced dimension. The model matrix of the projected system inherits the ill-conditioning of the original matrix, but the spectrum of the projected system accurately captures only a portion of the full spectrum. Equipped with the singular value decomposition of the projected system matrix, the solution of the projected problem is expressed using a filtered singular value expansion. This expansion depends on a regularization parameter which is determined using the method of Generalized Cross Validation (GCV), but here it is used for the truncated spectrum. This new technique, Truncated GCV (TGCV), is more effective compared with the standard GCV method. Numerical results using a synthetic example and real data demonstrate the efficiency of the presented algorithm.
کلیدواژههای انگلیسی مقاله
Magnetic survey, Sparse inversion, Golub-Kahan bidiagonalization, Regularization parameter estimation, Truncated generalized cross validation
نویسندگان مقاله
Saeed Vatankhah |
Assistant Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran
نشانی اینترنتی
https://jesphys.ut.ac.ir/article_65881_6379712cc0856924f302337e3f0a59a9.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1035/article-1035-1174390.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات