این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 29 آذر 1404
فیزیک زمین و فضا
، جلد ۴۴، شماره ۴، صفحات ۹۹-۱۱۴
عنوان فارسی
Application of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran
چکیده فارسی مقاله
In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neural network (RMTNN) and modified RMTNN (MRMTNN). In all three methods, empirical orthogonal functions (EOFs) are used as a vertical objective function. To apply the methods for constructing a 3D-image of the electron density, GPS measurements of the Iranian permanent GPS network (in three days in 2007) are used. Besides, two GPS stations from international GNSS service (IGS) are used as test stations. The ionosonde data in Tehran (φ=35.73820, λ=51.38510) has been used for validating the reliability of the proposed methods. The minimum RMSE for RMTNN, MRMTNN, ITNN are 0.5312, 0.4743, 0.3465 (10
11
ele./m
3
) and the minimum bias are 0.4682, 0.3890, and 0.3368 (10
11
ele./m
3
) respectively. The results indicate the superiority of ITNN method over the other two methods.
کلیدواژههای فارسی مقاله
Tomography، RMTNN، MRMTNN، ITNN، GPS،
عنوان انگلیسی
Application of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran
چکیده انگلیسی مقاله
In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neural network (RMTNN) and modified RMTNN (MRMTNN). In all three methods, empirical orthogonal functions (EOFs) are used as a vertical objective function. To apply the methods for constructing a 3D-image of the electron density, GPS measurements of the Iranian permanent GPS network (in three days in 2007) are used. Besides, two GPS stations from international GNSS service (IGS) are used as test stations. The ionosonde data in Tehran (φ=35.73820, λ=51.38510) has been used for validating the reliability of the proposed methods. The minimum RMSE for RMTNN, MRMTNN, ITNN are 0.5312, 0.4743, 0.3465 (10
11
ele./m
3
) and the minimum bias are 0.4682, 0.3890, and 0.3368 (10
11
ele./m
3
) respectively. The results indicate the superiority of ITNN method over the other two methods.
کلیدواژههای انگلیسی مقاله
Tomography, RMTNN, MRMTNN, ITNN, GPS
نویسندگان مقاله
Mir Reza Ghaffari Razin |
Assistant Professor, Department of Surveying Engineering, Arak University of Technology, Arak, Iran
Behzad Voosoghi |
Associate Professor, Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi Univ. of Technology, Tehran, Iran
نشانی اینترنتی
https://jesphys.ut.ac.ir/article_67736_f39b2acfb22bf1add208fdba10fb90db.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1035/article-1035-1174396.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات