این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Information and Communication Technology Research (IJICT، جلد ۹، شماره ۲، صفحات ۲۷-۳۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Novel Density based Clustering Method using Nearest and Farthest Neighbor with PCA
چکیده انگلیسی مقاله Common nearest-neighbor density estimators usually do not work well for high dimensional datasets. Moreover, they have high time complexity of O(n2) and require high memory usage especially when indexing is used. In order to overcome these limitations, we proposed a new method that calculates distances to nearest and farthest neighbor nodes to create dataset subgroups. Therefore computational time complexity becomes of O(nlogn) and space complexity becomes constant. After subgroup formation, assembling technique is used to derive correct clusters. In order to overcome high dimensional datasets problem, Principal Component Analysis (PCA) in the clustering method is used, which preprocesses high-dimensional data. Many experiments on synthetic data sets are carried out to demonstrate the feasibility of the proposed method. Furthermore we compared this algorithm to the similar algorithm –DBSCAN- on real-world datasets and the results showed significantly higher accuracy of the proposed method.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله | Azadeh Faroughi


| Reza Javidan



نشانی اینترنتی http://ijict.itrc.ac.ir/browse.php?a_code=A-10-27-17&slc_lang=fa&sid=1
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/417/article-417-1212321.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده فناوری اطلاعات
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات