این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Information and Communication Technology Research (IJICT، جلد ۸، شماره ۲، صفحات ۱-۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Learning Motion Patterns in Traffic Scenes by Improved Group Sparse Topical Coding
چکیده انگلیسی مقاله Analyzing motion patterns in traffic videos can directly lead to generate some high-level descriptions of the video content. In this paper, an unsupervised method is proposed to automatically discover motion patterns occurring in traffic video scenes. For this purpose, based on optical flow features extracted from video clips, an improved Group Sparse Topical Coding (GSTC) framework is applied for learning semantic motion patterns. Then, each video clip can be sparsely represented by a weighted sum of learned patterns which can further be employed in very large range of applications. Compared to the original GSTC, the proposed improved version of GSTC selects only a small number of relevant words for each topic and hence provides a more compact representation of topic-word relationships. Moreover, in order to deal with large-scale video analysis problems, we present an online algorithm for improved GSTC which can not only deal with large video corpora but also dynamic video streams. Experimental results show that our proposed approach finds the motion patterns accurately and gives a meaningful representation for the video.
کلیدواژه‌های انگلیسی مقاله Motion patterns, Group Sparse Topical Coding, traffic scene

نویسندگان مقاله | Parvin Ahmadi


| Iman Gholampour


| Mahmoud Tabandeh



نشانی اینترنتی http://ijict.itrc.ac.ir/browse.php?a_code=A-10-27-43&slc_lang=fa&sid=1
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/417/article-417-1212346.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده فناوری اطلاعات
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات