این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 7 دی 1404
International Journal of Information and Communication Technology Research (IJICT
، جلد ۴، شماره ۲، صفحات ۱۱-۲۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
E-Learners’ Activity Categorization Based on Their Learning Styles Using ART Family Neural Network
چکیده انگلیسی مقاله
Adaptive learning means providing the most appropriate learning materials and strategies considering students' characteristics. Grouping students based on their learning styles is one of the approaches which has been followed in this area. In this paper, we introduce a mechanism in which learners are divided into some categories according to their behavioral factors and interactions with the system in order to adopt the most appropriate recommendations. In the proposed approach, learners' grouping is done using ART neural network variants including Fuzzy ART, ART 2A, ART 2A-C and ART 2A-E. The clustering task is performed considering some features of learner's behavior chosen based on their learning style. Additionally, these networks identifythe number of students' categories according to the similarities among their actions during the learning processautomatically. Having employed mentioned methods in a web-based educational system and analyzed their clustering accuracy and performance, we achieved remarkable outcomes as presented in this paper.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
| Gholam Ali Montazer
| Hessam Khoshniat
نشانی اینترنتی
http://ijict.itrc.ac.ir/browse.php?a_code=A-10-27-157&slc_lang=fa&sid=1
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/417/article-417-1212460.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
فناوری اطلاعات
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات