این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 6 دی 1404
International Journal of Information and Communication Technology Research (IJICT
، جلد ۴، شماره ۲، صفحات ۳۷-۴۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Performance Improvement of Language Identification Using Transcription Based Sequential Approaches & Sequential Kernels Based SVM
چکیده انگلیسی مقاله
In this paper a generative frontend based on both phonetic and prosodic features, and also a couple of approaches based on phonetic transcription- Aggregated Phone Recognizer followed by Language Models (APRLM) and Generalized Phone Recognizer followed by Language Models (GPRLM), are investigated. APRLM and GPRLM have few disadvantages since they need phonetic transcription of speech data, and also they use fewer level of information while the generative frontend built upon an ensemble of Gaussian densities uses prosodic and phonetic information altogether. Furthermore, no transcription of speech data is needed in Support Vector Machine (SVM)- based approaches, and they showed better performances in our experiments too. In addition, APRLM and GPRLM are more time consuming than SVM-based approaches. We used Mel-Frequency Cepstral Coefficients (MFCC) in APRLM and GPRLM, and Shifted Delta Cepstrum (SDC) and Pitch Contour Polynomial Approximation (PCPA) features in SVM-based methods. Probabilistic Sequence Kernel (PSK) and Generalized Linear Discriminant Sequence (GLDS) kernels are used in SVM experiments. SVM using GLDS and PSK kernels outperforms GMM in all our LID experiments conducted by applying PCPA features and LID performance improved about 2.1% and 5.9% respectively. The combination of Probabilistic Characteristic Vector using PCPA (PCV-PCPA) and Probabilistic Characteristic Vector using SDC (PCV-SDC) provides further improvements.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
| Seyed Abbas Hosseini Amereei
| Mohammad Mehdi Homayounpour
نشانی اینترنتی
http://ijict.itrc.ac.ir/browse.php?a_code=A-10-27-159&slc_lang=fa&sid=1
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/417/article-417-1212462.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
فناوری اطلاعات
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات