این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Information and Communication Technology Research (IJICT، جلد ۴، شماره ۱، صفحات ۲۹-۳۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Efficient Object Tracking Using Optimized K-means Segmentation and Radial Basis Function Neural Networks
چکیده انگلیسی مقاله In this paper, an improved method for object tracking is proposed using Radial Basis Function Neural Networks. Optimized k-means color segmentation is employed for detecting an object in first frame. Next the pixelbased color features (R, G, B) from object is used for representing object color and color features from surrounding background is extracted and extended to develop an extended background model. The object and extended background color features are used to train Radial Basis Function Neural Network. The trained RBFNN is employed to detect object in subsequent frames while mean-shift procedure is used to track object location. The performance of the proposed tracker is tested with many video sequences. The proposed tracker is illustrated to be able to track object and successfully resolve the problems caused by the camera movement, rotation, shape deformation and 3D transformation of the target object. The proposed tracker is suitable for real-time object tracking due to its low computational complexity.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله | Alireza Asvadi


| MohammadReza Karami


| Yasser Baleghi



نشانی اینترنتی http://ijict.itrc.ac.ir/browse.php?a_code=A-10-27-166&slc_lang=fa&sid=1
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/417/article-417-1212469.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده فناوری اطلاعات
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات