این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 30 آذر 1404
ماشین بینایی و پردازش تصویر
، جلد ۵، شماره ۲، صفحات ۱۳-۲۵
عنوان فارسی
ناحیه بندی تومور در تصاویر ماموگرافی با استفاده از کانتور فعال چن-وسه و اطلاعات ویژگی محلی بافت
چکیده فارسی مقاله
ناحیه بندی تومورهای سرطانی در تصاویر ماموگرافی مرحله ی مهمی در سامانه های تشخیص کمک کامپیوتری (CAD) بوده و یک مساله ی پر چالش است. در این مقاله از اطلاعات ویژگی محلی (LFI-CV) بافت تصویر در مدل کانتور فعال چن-وسه برای ناحیه بندی تومور استفاده شده است. در این مدل، ابتدا نگاشت ویژگی های بافت از تصویر استخراج می شود. سپس اطلاعات ویژگی محلی بافت تصویر به عنوان مقادیر ضرایب نیروی مدل چن-وسه در نظر گرفته می شوند. به کمک این ضرایب، انرژی مدل کانتور کمینه می شود و کانتور می تواند دقیق تر بر روی مرزهای تومور قرار گیرد. اطلاعات ویژگی های بافت مورد استفاده شامل ماتریس همرخداد سطح خاکستری (GLCM) و ویژگی های گابور می باشند. عملکرد روش ناحیه بندی پیشنهادی با استفاده از مدل های کانتور فعال چن -وسه مقایسه و ارزیابی شده است. ناحیه بندی در مدل کانتور فعال پیشنهادی با نگاشت های ویژگی کنتراست، آنتروپی و گابور در جهت و نسبت به مدل های کانتور چن- وسه دیگر در تکرار کمتر همگرا می شود. نتایج نشان می دهند که روش ناحیه بندی پیشنهادی برای ویژگی بافت گابور در جهت نتایج ناحیه بندی مطلوبی نسبت به روش های کانتور فعال چن-وسه دیگر از لحاظ زمان، تعداد تکرار، دقت و حساسیت ناحیه بندی دارد. تصاویر استفاده شده در این مطالعه از پایگاه داده جامعه ی تحلیل تصاویر ماموگرافی (MIAS) اخذ شدهاند.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Tumor segmentation in mammogram images using Chan-Vese active contour and texture local feature information
چکیده انگلیسی مقاله
Cancerous tumor segmentation in mammogram images is an important stage and a challenging problemin computer aided detection (CAD) systems. In this paper, local feature information and Chan-Vese(LFI-CV)active contour modelare used for tumor segmentation. First, the texture feature mapsof mammograms are extracted. The utilized texture feature information includes gray level co-occurrence matrix (GLCM) and Gabor features. Using this information,the force values ofChan-Vese model are set and active contour model's energy is minimized.As a result, the contour accurately segments the tumor. The results show that tumor segmentation using the proposed active contour modelandGabor texture feature at orientationis efficient in regard to the number of iterations, accuracy, and sensitivity. The mini-MIAS database is used for evaluation.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
فاطمه شیرازی |
دانشجوی کارشناسی ارشد دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان، دانشکده برق و کامپیوتر
عصمت راشدی |
دانشگاه تحصیلات تکمیلی صنعتی کرمان، دانشکده برق و کامپیوتر، بخش مهندسی برق
حسین نظام آبادی پور |
دانشگاه شهید باهنر کرمان، بخش مهندسی کامپیوتر
نشانی اینترنتی
http://jmvip.sinaweb.net/article_51045_64c153aee55cda516076a66130e565e0.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1041/article-1041-1258338.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات