این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Transportation Engineering، جلد ۲، شماره ۴، صفحات ۳۰۷-۳۱۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Prediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks
چکیده انگلیسی مقاله Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling of its permeability. In this paper, two important aspects of pervious concrete due to permeability and compressive strength are investigated using artificial neural networks (ANN) based on laboratory data. The proposed network is intended to represent a reliable functional relationship between the input independent variables accounting for the variability of permeability and compressive strength of a porous concrete. Results of the Back Propagation model indicate that the general fit and replication of the data regarding the data points are quite fine. The R-square goodness of fit of predicted versus observed values range between 0.879 and 0.918 for the final model; higher values were observed for the permeability as compared with compressive strength and for the train data set rather than the test data set. The findings can be employed to predict these two important characteristics of pervious concrete when there are no laboratorial data available.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله بهروز شیرگیر |
faculty of engineering, kharazmi university, tehran, iran

امیررضا ممدوحی | amir reza
department of civil and environmental engineering, tarbiat modares university, tehran, iran
سازمان اصلی تایید شده: دانشگاه تربیت مدرس (Tarbiat modares university)

ابوالفضل حسنی |
department of civil and environmental engineering, tarbiat modares university, tehran, iran
سازمان اصلی تایید شده: دانشگاه تربیت مدرس (Tarbiat modares university)


نشانی اینترنتی http://www.ijte.ir/article_10444_3a15c79432e94ccfc1d56a61ea96a5ef.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات