این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
پژوهش های فرسایش محیطی
، جلد ۸، شماره ۳، صفحات ۸۷-۱۰۵
عنوان فارسی
ارزیابی دقّت روشهای زمینآمار و شبکه عصبی مصنوعی در برآورد سرعت آستانه فرسایش بادی (مطالعه موردی: منطقهی جزینک، دشت سیستان)
چکیده فارسی مقاله
آگاهی از تغییرات مکانی سرعت آستانه فرسایش بادی با بهرهگیری از روشهای دقیق و کمهزینه اهمیّت زیادی در فعالیتهای بیابانزدایی دارد. پژوهش حاضر با هدف مقایسهی دقّت روشهای زمین آمار (کریجینگ و کوکریجینگ) و روش پرسپترون چندلایه در برآورد سرعت آستانه فرسایش بادی و شناخت متغیرهای دارای اهمیّت بیشتر در بخش جزینک دشت سیستان انجام شد. برای این منظور، علاوه بر اندازهگیری سرعت آستانه فرسایش بادی با روش تونل باد در 60 نقطه از خاک سطحی، نمونهبرداری از آن نیز در همین نقاط انجام شد. بعد از اندازهگیری خصوصیات خاک در آزمایشگاه و بررسی نرمال بودن دادهها، سرعت آستانه با روشهای کریجینگ و کوکریجینک برآورد شد. سپس اعتبارسنجی نتایج حاصل از این روشها نیز با استفاده از روش ارزیابی متقاطع انجام شد. برای اجرای مدل پرسپترون چندلایه، بعد از استانداردسازی دادهها و تعیین معماری مدل بهروش آزمون و خطا، مدل اجرا شد. سپس نتایج حاصل با استفاده از آمارههای جذر میانگین مربعات خطا و ضریب تعیین، ارزیابی شد. نتایج نشان داد که از بین روشهای زمین آمار، روش درونیابی کوکریجینگ با متغیر کمکی سیلت در مقایسه با روش کریجینگ در برآورد سرعت آستانه فرسایش بادی، دقّت بیشتری دارد (60 /0 R2 =و 45/0RMSE=). علاوه بر این، سرعت آستانه فرسایش بادی در قسمتهای شمالی بیش از بخشهای جنوبی و غربی منطقهی مورد مطالعه است و متغیرهای مرتبط با بافت خاک (درصد رس، سیلت و ماسه)، اسیدیته، شوری، درصد مادهآلی، میانگین وزنی قطر خاکدانهها و درصد سنگریزهی خاک سطحی، سهم عمدهای در تعیین سرعت آستانه فرسایش بادی در منطقه دارد. ارزیابی کلی دقّت مدلهای مورد استفاده نیز نشان داد که دقیقترین برآورد از سرعت آستانه فرسایش بادی، توسط مدل پرسپترون چندلایه با سه لایه مخفی و سه نرون در هر لایه انجام شدهاست (98 /0 R2 =و 07/0RMSE=).
کلیدواژههای فارسی مقاله
دشت سیستان، زمین آمار، سرعت آستانه فرسایش بادی، شبکه عصبی مصنوعی
عنوان انگلیسی
Accuracy Assessment of Geo-Statistics and Artificial Neural Networks Methods to Estimate Threshold Wind Velocity: A Case of Jazinak Region, Sistan Plain
چکیده انگلیسی مقاله
Extended abstract 1- Introduction Threshold wind velocity is a major influencing variable in transportation of soil particles and dust production. It is considered as an important component in many theoretical equations and numerical models due to its importance in wind erosion studies (Stout & Zobeck, 1996). The wind tunnel method (fixed and portable), empirical relationships and sediment traps are the common methods to estimate the threshold wind velocity (Refahi, 2005). Estimation of this variable can assist researchers to recognize critical points, in addition to providing suitable activities to prevent depletion of limited resources in desert region. This study aimed at comparing the accuracy of geo-statistical techniques (Kriging and Co-kriging) and artificial neural network model, estimating the threshold of wind velocity, selecting more accurate methods to be used in wind erosion combating projects, as well as identifying more important variables in threshold wind velocity in the Sistan region. 2- Methodology The study site with an area of 60 km2 lies within 30º 49′ 43′′ to 30º 54′ 49′′ N latitude and 61º 30′ 22′′ to 61 º 37′ 05′′ E between Sistan river and Fourth Chah-Nimeh reservoir which supplies drinking water of Zabol and Zahedan cities. Threshold wind velocity was measured using wind tunnel in 60 points of the topsoil. Soil sampling was done at the same points. Soil dataset was checked for normal distribution, then threshold wind velocity estimation and validation of obtained results, were respectively done by using the Kriging and Co-kriging and cross validation methods. The multi-layered perceptron model was implemented and obtained results were evaluated using root mean squared error statistics and coefficient of determination, after data standardization and determining the model architecture using trial and error method. 3- Results Based on the results, among the geo-statistic methods, co- kriging interpolation method with spherical variogram model in comparison with kriging method was determined as an optimal model for the estimation of the threshold wind velocity (R2= 0.60 and RMSE= 0.45). Study of the importance of effective variables also indicated that the variables related to soil texture (clay, silt, sand percents), acidity, salinity, organic matter percent, average weight of particles diameter and the percentage of surface soil gravel were the main contributors to the accuracy of predictive models and hence determining the threshold wind velocity in the study area. The overall assessment of the models used showed that the lower error rate and therefore, the more precise estimation of thresholds wind velocity erosion in the present study, were carried out by multi-layer perceptron model with three layers and three neurons per layer which utilizes Gaussian' transfer function and Levenberg- Marquardt training rule. 4- Discussion & Conclusions According to the results, the Co-kriging method enabled to perform interpolation with high precision because it utilizes an auxiliary variable and uses covariance between two variables for interpolation (Lark et al., 2014). Furthermore, some capabilities such as increasing data processing power, problems related to measuring some variables, as well as, the correlation between measured variables and the availability of various software tools has increased the usage of this estimation method in various environmental studies (Amini et al., 2002). Performance superiority of the Co-kriging method compared to the Kriging method, has also been reported by Behnia et al. (2016). Likewise, a set of soil characteristics has the greatest effect on the threshold wind velocity in the Sistan region. In line with this findings, it has been reported that the soil crust properties affect the threshold wind velocity; as a result, the threshold value varies in soils with different characteristics (Webb et al., 2016). According to the findings of this research, it is stated that due to utilization of the pair of input and output patterns, artificial neural networks are as powerful tool in various studies related to natural resources. In general, it can be said that through the development of vegetation using native species in the southern and western parts of the study area can increase the threshold of wind erosion in these areas in addition to reducing soil erodibility and its consequences.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
منیژه ارباب | 1- Manijeh Arbab
گروه مرتع و آبخیزداری، دانشکدهی آب و خاک، دانشگاه زابل
احمد پهلوانروی | 2- Ahmad Pahlavanravi
گروه مرتع و آبخیزداری، دانشکدهی آب و خاک، دانشگاه زابل
حسین پیری صحراگرد | Hossein Piri Sahragard
گروه مرتع و آبخیزداری، دانشکدهی آب و خاک، دانشگاه زابل
میثم امیری | Meysam Amiri
گروه پژوهشی مدیریت منابع آب، پژوهشکدهی تالاب بینالمللی هامون، دانشگاه زابل
نشانی اینترنتی
http://magazine.hormozgan.ac.ir/browse.php?a_code=A-10-587-1&slc_lang=fa&sid=1
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1412/article-1412-1297309.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
مدلسازی و تحلیل زمانی و مکانی رخداد انواع مختلف فرسایش محیطی
نوع مقاله منتشر شده
مستخرج از پایاننامه / رساله / طرح پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات