این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Chemistry and Chemical Engineering، جلد ۲۷، شماره ۱، صفحات ۷-۱۵

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Determination of Surface Tension and Viscosity of Liquids by the Aid of the Capillary Rise Procedure Using Artificial Neural Network (ANN)
چکیده انگلیسی مقاله The present investigation entails a procedure by which the surface tension and viscosity of liquids could be redicted.To this end, capillary experiments were performed for porous media by utilizing fifteen different liquids and powders. The time of capillary rise to a certain known height of each liquid in a particular powder was recorded. Two artificial neural networks (ANNs) were designed and used to separately predict the surface tension and the viscosity of each liquid respectively. The surfacetension predictornetwork had six inputs, namely:particlesize,bulk density, packing density and surface free energy of the powders as well as the density of the probe liquids together with the capillary rise time of the liquids in the corresponding powders. The viscosity predictor network had surface tension as an extra input. In order to correlate the surface tension and viscosity as predicted by the corresponding artificial neural network to their experimentally determined equivalents, two different statistical parameters namely the product moment correlation coefficient (r2) and the performance factor (PF/3) were used. It must be noted that for a perfect correlation r2 = 1 and PF/3 = 0. The results of the present work clearly showed that the artificial neural network approach is able to predict the surface tension (i.e. r2 = 0.95, PF/3 = 16) and viscosity (i.e. r2 = 0.998 , PF/3 = 13) of the probe liquids with unsurpassed accuracy.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله صمد احدیان |
departent of polymer and color engineering, amirkabir university of technology, p.o. box 15875-4413 tehran, i.r. iran
سازمان اصلی تایید شده: دانشگاه صنعتی امیرکبیر (Amirkabir university of technology)

سیامک مرادیان |
departent of polymer and color engineering, amirkabir university of technology, p.o. box 15875-4413 tehran, i.r. iran
سازمان اصلی تایید شده: دانشگاه صنعتی امیرکبیر (Amirkabir university of technology)

محسن محسنی |
departent of polymer and color engineering, amirkabir university of technology, p.o. box 15875-4413 tehran, i.r. iran
سازمان اصلی تایید شده: دانشگاه صنعتی امیرکبیر (Amirkabir university of technology)

محمد امانی تهران | amani tehran
department of textile engineering, amirkabir university of technology, p.o. box 15875-4413 tehran, i.r. iran
سازمان اصلی تایید شده: دانشگاه صنعتی امیرکبیر (Amirkabir university of technology)

فرهاد شریف |
departent of polymer and color engineering, amirkabir university of technology, p.o. box 15875-4413 tehran, i.r. iran
سازمان اصلی تایید شده: دانشگاه صنعتی امیرکبیر (Amirkabir university of technology)


نشانی اینترنتی http://www.ijcce.ac.ir/article_6928_3b9c25207b8ea6b3c94b50c452984cea.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات