این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مهندسی بیوسیستم ایران، جلد ۴۹، شماره ۴، صفحات ۵۶۷-۵۷۶

عنوان فارسی پیش بینی دمای هوای داخل گلخانه مجهز به سامانه ی سرمایش تبخیری با استفاده از مدل رگرسیونی و شبکه های عصبی مصنوعی (مطالعه موردی در شهر کرمان)
چکیده فارسی مقاله در کشاورزی امروزی، نقش گلخانه به عنوان ابزاری برای افزایش کمیت و کیفیت محصول، دارای اهمیت فراوان می­باشد. شرایط داخلی گلخانه به برخی  عوامل بیرونی وابسته است که به­طور معمول پیش­بینی دقیق آن­ها به سادگی امکان پذیر نیست. هدف از اجرای این تحقیق، تخمین دمای هوای داخل گلخانه در حالت­های بدون تهویه و با استفاده از سامانه­ی سرماش تبخیری با روش شبکه عصبی مصنوعی و مدل رگرسیونی است. از برخی عوامل مانند شدت تابش خورشید، دمای هوای محیط، دمای دیواره شمالی گلخانه، دبی و دمای هوای ورودی به گلخانه، به­عنوان ورودی مدل رگرسیونی و شبکه عصبی استفاده گردید. برای آموزش شبکه عصبی از پرسپترون چندلایه با الگوریتم یادگیری پس‌انتشار خطا و از الگوریتم­های آموزش لونبرگ مارکوارت، تنظیم به­روش بیزی و اسکالت کانژوگیت گرادینت و در مدل رگرسیونی از روش پیشرو و پسرو برای تعیین معادلات رگرسیونی استفاده شد. ارزیابی مدل شبکه عصبی و رگرسیونی با شاخص­های آماری میانگن مربعات خطا، ضریب تبیین و معیار متوسط قدر مطلق خطا تعیین گردید. مقایسه نتایج آماری حاکی از دقت بالاتر شبکه عصبی مصنوعی نسبت به مدل رگرسیونی است.
کلیدواژه‌های فارسی مقاله دمای گلخانه، سرمایش تبخیری، شبکه عصبی مصنوعی، مدل سازی،

عنوان انگلیسی Temperature Prediction of a Greenhouse Equipped with Evaporative Cooling System Using Regression Models and Artificial Neural Network (Case Study in Kerman City)
چکیده انگلیسی مقاله Today's agriculture, greenhouse cultivation plays a key role in increasing the quantity and quality of products. Indoor conditions of the greenhouse depend on some external factors, which are usually not easily predictable. The purpose of this study was to estimate the air temperature inside the greenhouse in two modes of ventilation (non-ventilated conditions and evaporative cooling system) using artificial neural network and regression models. Some factors such as solar irradiance, ambient temperature, northern wall temperature and flow rate and temperature of the cooling air were employed as the inputs of the models. Verification of the models was conducted using statistical criteria of mean square error, correlation coefficient and mean absolute percentage error. In order to train the neural network from multilayer perceptron with the algorithm of post-error learning and using the Levenberg-marquart training algorithms, the Bayesian regression and the gradient conjugate scalar, and in the regression model of the progressive and forward method for determining regression equations were used. Comparison of the statistical criteria indicated that the artificial neural network method predicted the greenhouse temperature with a higher accuracy than the regression model.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله محمد حسین شجاعی |
بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

حمید مرتضی پور |
استادیار بخش مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

کاظم جعفری نعیمی |
بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

محمدمهدی مهارلویی |
بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران


نشانی اینترنتی https://ijbse.ut.ac.ir/article_70009_18e96323a7befd74c9a9b96ab8822cf7.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1228/article-1228-1309223.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات