این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 28 آذر 1404
Journal of Agricultural Science and Technology
، جلد ۱۸، شماره ۶، صفحات ۱۷۰۵-۱۷۱۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Using Leaf Based Hyperspectral Models for Monitoring Biochemical Constituents and Plant Phenotyping in Maize
چکیده انگلیسی مقاله
The aim of this study was to develop and validate qualitative and quantitative models to discriminate different types of maize and also estimate biochemical constituents. Spectral data were taken from the central leaf of randomly-chosen plants grown in field trials in 2011 and 2012. Leaf chlorophyll and protein content and stalk protein content were determined in the same plants. Four different Support Vector Machine (SVM) models were generated and validated in this study. In qualitative models, maize type was designated as dependent variable while Full Spectral (FS) data (400-1,000 nm) and Spectral Indices (SI) data (34 indices/bands) were independent variables. In the two quantitative models (SVMR-FS and SVMR-SI), independent variables were the same, whereas dependent variables were assigned as the quantitatively measured traits. Results showed the qualitative models to be a robust method of classification for distinguishing different maize types, such as High Oil Maize (HOM), High Protein Maize (HPM) and standard (NORMAL) maize genotypes. The SVMC-FS model was superior to SVMC-SI in terms of the genotypic classification of maize plants. Quantitative models with full spectral data gave more robust prediction than the others. The best prediction result (RMSEC= 222.4 µg g-1, R2 for Cal= 0.739, SEP= 213.3 µg g-1; RPD= 2.04 and r= 0.877) was obtained from the SVMR-FS model developed for chlorophyll content. Indirect estimation models, based on relationships between leaf-based spectral measurements and leaf and stalk protein content, were less satisfactory.
کلیدواژههای انگلیسی مقاله
Genotypic classification,Support vector machine,Zea mays
نویسندگان مقاله
f kahriman |
department of field crops, faculty of agriculture, çanakkale onsekiz mart university, çanakkale, turkey.
k demirel |
agricultural sensor and remote sensing laboratory, faculty of agriculture, çanakkale onsekiz mart university, çanakkale, turkey.
m inalpulat |
agricultural sensor and remote sensing laboratory, faculty of agriculture, çanakkale onsekiz mart university, çanakkale, turkey.
c o egesel | c o
department of agricultural biotechnology, faculty of agriculture, çanakkale onsekiz mart university, çanakkale, turkey.
l genc |
agricultural sensor and remote sensing laboratory, faculty of agriculture, çanakkale onsekiz mart university, çanakkale, turkey.
نشانی اینترنتی
http://jast.modares.ac.ir/article_14983_9f1174dd511948befe750bba43fc5876.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات