این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
Journal of Agricultural Science and Technology
، جلد ۱۷، شماره ۱، صفحات ۴۹-۶۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A Comparative Study between Artificial Neural Networks and Adaptive Neuro-fuzzy Inference Systems for Modeling Energy Consumption in Greenhouse Tomato Production- A Case Study in Isfahan Province
چکیده انگلیسی مقاله
In this study greenhouse tomato production was investigated from energy consumption and greenhouse gas (GHG) emission point of views. Moreover, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) were employed to model energy consumption for greenhouse tomato production. Total energy input and output were calculated as 1316.14 and 281.1 GJ/ha. Among the all energy inputs natural gas and electricity had the most significant contribution to the total energy input. Evaluations of GHG emission illustrated that the total GHG emission was estimated at 34758.11 kg CO2eq./ha and among all inputs, electricity played the most important role, followed by natural gas. Drawing a comparison between ANN and ANFIS models demonstrated that the ANFIS-based models due to employing fuzzy rules can model output energy more accurate than ANN models. Accordingly, Correlation coefficient (R), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) for the best ANFIS architecture were calculated as 0.983, 0.025 and 0.149, respectively while these performance parameters for the best ANN model was computed as 0.933, 0.05414 and 0.279, respectively.
کلیدواژههای انگلیسی مقاله
Energy consumption,ANFIS,ANN,GHG emission,Tomato production
نویسندگان مقاله
b خوشنویسان |
department of agricultural machinery engineering, faculty of agricultural engineering and technology, university of tehran, karaj, iran
سازمان اصلی تایید شده
: دانشگاه تهران (Tehran university)
sh رفیعی |
department of agricultural machinery engineering, faculty of agricultural engineering and technology, university of tehran, karaj, iran
سازمان اصلی تایید شده
: دانشگاه تهران (Tehran university)
j iqbald |
cdepartment of software engineering, faculty of computer science and information technology, university of malaya, 50603 kuala lumpur, malaysia
sh shamshirbande |
department of computer system and technology, faculty of computer science and information technology, university of malaya, 50603 kuala lumpur, malaysia.
m امید |
department of agricultural machinery engineering, faculty of agricultural engineering and technology, university of tehran, karaj, islamic republic of iran.
سازمان اصلی تایید شده
: دانشگاه تهران (Tehran university)
n b anuarf | n b
department of computer system and technology, faculty of computer science and information technology, university of malaya, 50603 kuala lumpur, malaysia
a w بینتی wahabg | a w abdul wahabg
department of computer system and technology, faculty of computer science and information technology, university of malaya, 50603 kuala lumpur, malaysia
نشانی اینترنتی
http://jast.modares.ac.ir/article_11091_3b2b1b5c3589a3e62b4f201c8b811663.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات