این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Artificial Intelligence and Data Mining، جلد ۲، شماره ۲، صفحات ۱۳۵-۱۳۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Employing data mining to explore association rules in drug addicts
چکیده انگلیسی مقاله Drug addiction is a major social, economic, and hygienic challenge that impacts on all the community and needs serious threat. Available treatments are successful only in short-term unless underlying reasons making individuals prone to the phenomenon are not investigated. Nowadays, there are some treatment centers which have comprehensive information about addicted people. Therefore, given the huge data sources, data mining can be used to explore knowledge implicit in them, their results can be employed as a knowledge base of decision support systems to make decisions regarding addiction prevention and treatment. We studied participants of such clinics including 471 participants, where 86.2% were male and 13.8% were female. The study aimed to extract rules from the collected data by using association models. Results can be used by rehab clinics to give more knowledge regarding relationships between various parameters and help them for better and more effective treatments. E.g. according to the findings of the study, there is a relationship between individual characteristics and LSD abuse, individual characteristics, the kind of narcotics taken, and committing crimes, family history of drug addiction and family member drug addiction.
کلیدواژه‌های انگلیسی مقاله Drug addiction,Data Mining,association rules,rules discovery

نویسندگان مقاله فرزانه زاهدی |
lecturer, roghayeh faculty of engineering, yazd, iran

محمدرضا زارع میرک آباد | mohammad reza zare mirakabad
department of electrical and computer engineering, yazd university, yazd, iran.
سازمان اصلی تایید شده: دانشگاه یزد (Yazd university)


نشانی اینترنتی http://jad.shahroodut.ac.ir/article_308_2f33fd480ca2908921534fca50dda004.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات