این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Artificial Intelligence and Data Mining، جلد ۱، شماره ۲، صفحات ۱۱۹-۱۲۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Credit scoring in banks and financial institutions via data mining techniques: A literature review
چکیده انگلیسی مقاله This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct online journal database. The articles are categorized and classified into enterprise, individual and small and midsized (SME) companies credit scoring. Data mining techniques is also categorized to single classifier, Hybrid methods and Ensembles. Variable selection methods are also investigated separately because it’s a major issue in credit scoring problem. The findings of the review reveals that data mining techniques are mostly applied to individual credit score and there are a few researches on enterprise and SME credit scoring. Also ensemble methods, support vector machines and neural network methods are the most favorite techniques used recently. Hybrid methods are investigated in four categories and two of them which are “classification and classification” and “clustering and classification” combinations are used more. Paper analysis provides a guide to future researches and concludes with several suggestions for further studies.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله سید مهدی سادات رسول | seyed mahdi
iran university of science and technology iust
سازمان اصلی تایید شده: دانشگاه علم و صنعت ایران (Iran university of science and technology)

محمدرضا غلامیان |
iran university of science and technology iust
سازمان اصلی تایید شده: دانشگاه علم و صنعت ایران (Iran university of science and technology)

محمد صیامی |
iran university of science and technology iust
سازمان اصلی تایید شده: دانشگاه علم و صنعت ایران (Iran university of science and technology)

زینب حاجی محمدی |
amirkabir university of technology
سازمان اصلی تایید شده: دانشگاه صنعتی امیرکبیر (Amirkabir university of technology)


نشانی اینترنتی http://jad.shahroodut.ac.ir/article_124_d11cd26875b6d5e6b2f785de341e924c.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات