این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Mining and Environment، جلد ۴، شماره ۱، صفحات ۳۵-۴۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Prediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods
چکیده انگلیسی مقاله Static deformation modulus is recognized as one of the most important parameters governing the behavior of rock masses. Predictive models for the mechanical properties of rock masses have been used in rock engineering because direct measurement of the properties is difficult due to time and cost constraints. In this method the deformation modulus is estimated indirectly from classification systems. This paper presents the results of a study into the application of Artificial Neural Networks (ANN) technique and Regression models for estimation of the deformation modulus of rock masses. A database, including 225 actual measured deformation modulus, Uniaxial Compressive Strengths of the rock (UCS), and Rock Mass Rating (RMR) was established. Data collected from different projects. For predicting Em by regression, a nonlinear regression method was chosen. This model showed the coefficient correlation of 0.751 and mean absolute percentage error (MAPE) of 9.911%. Also a three-layer ANN was found to be optimum, with an architecture of two neurons in the input layer, four neurons in the hidden layer and one neuron in the output layer. The correlation coefficient determined for deformation modulus predicted by the ANN was 0.786 and the quantity of MAPE was 6.324%. With respect to the results obtained from two models, the ANN technique was shown to be better than the regression model because of its higher accuracy.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله جواد غلام نژاد |
department of mining and metallurgical engineering

حمیدرضا بهاالدینی |
m.sc. student, department of mining and metallurgical engineering, yazd university, yazd, iran
سازمان اصلی تایید شده: دانشگاه یزد (Yazd university)

مرتضی رستگار |
m.sc. student, department of mining and metallurgical engineering, yazd university, yazd, iran
سازمان اصلی تایید شده: دانشگاه یزد (Yazd university)


نشانی اینترنتی http://jme.shahroodut.ac.ir/article_144_856cce3b13de100ba5d395fc9824b1c4.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات