این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 28 آذر 1404
Journal of Mining and Environment
، جلد ۱۰، شماره ۲، صفحات ۵۴۳-۵۵۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Performance evaluation of gang saw using hybrid ANFIS-DE and hybrid ANFIS-PSO algorithms
چکیده انگلیسی مقاله
One of the most significant and effective criteria in the process of cutting dimensional rocks using the gang saw is the maximum energy consumption rate of the machine, and its accurate prediction and estimation can help designers and owners of this industry to achieve an optimal and economic process. In the present research work, it is attempted to study and provide models for predicting the maximum energy consumption of the gang saw during the process of soft dimensional rocks with the help of an intelligent optimization model such as random non-linear techniques, i.e. the Hybrid ANFIS-DE and Hybrid ANFIS-PSO algorithms based upon 4 physical and mechanical parameters including uniaxial compressive strength, Mohs hardness, Schimazek's F-abrasiveness factors, Young modulus, and an operational characteristic of the machine, i.e. production rate. During this research work, 120 samples are tested on 12 carbonate rocks. The maximum energy consumption of the cutting machine during this work is measured and used as a modeling output for evaluating the performance of cutting machine. Also meta-heuristic algorithms including DE and PSO algorithms are used for training the Adaptive Neural Fuzzy Inference System (ANFIS). In addition, the PSO algorithm has a higher ability in terms of model output and performance indices and has a superiority over the differential evolution algorithm. Furthermore, comparison between the measured datasets with the ANFIS-DE and ANFIS-PSO models indicate the accuracy and ability of the ANFIS-PSO model in predicting the performance of gang saw considering the machine's properties and the cut rock.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
A.R. Dormishi |
Faculty of Mining, Petroleum & Geophysics, Shahrood University of Technology, Shahrood, Iran
M. Ataei |
Faculty of Mining, Petroleum & Geophysics, Shahrood University of Technology, Shahrood, Iran
R. Khaloo Kakaie |
Faculty of Mining, Petroleum & Geophysics, Shahrood University of Technology, Shahrood, Iran
R. Mikaeil |
Department of Mining and Metallurgical Engineering, Urmia University of Technology, Urmia, Iran
S. Shaffiee Haghshenas |
Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran
نشانی اینترنتی
http://jme.shahroodut.ac.ir/article_1152_bd32e47491eb0f4b655547f9b56b7615.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/496/article-496-1398342.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات