این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
آب و فاضلاب، جلد ۲۷، شماره ۴، صفحات ۹۳-۹۸

عنوان فارسی کاربرد روش‌های شبکه عصبی و مدل‌های سری زمانی در پیش‌بینی مصرف آب شرب، مطالعه موردی شهر رشت
چکیده فارسی مقاله پیش‌بینی تقاضای آب شهری و طراحی ظرفیت مناسب برای سامانه عرضه آب شهری شامل شبکه‌های انتقال و مجتمع‌های تصفیه آب، ضرورت استفاده از الگوهای رفتاری و پیش‌بینی مقدار مصرف آب در شهرها را آشکار می‌نماید. قرار گرفتن شهر رشت در مسیر کریدور شمال- جنوب و پیش‌بینی ایفای نقش جدید آن به‌عنوان قطب تجارت و بازرگانی خارجی لزوم بازنگری در ساختارهای شهری و اخذ آمادگی برای گسترش زیرساخت‌ها و زیربناهای لازم را گوشزد می‌نماید. در پژوهش حاضر با بهره‌گیری از سه رهیافت خود توضیح جمعی میانگین متحرک فصلی، شبکه عصبی مصنوعی و الگوی هیبرید خود توضیح جمعی میانگین متحرک فصلی در ترکیب با الگوریتم پس انتشار خطا به الگوسازی و پیش‌بینی مقدار مصرف آب شرب شهر رشت پرداخته شد. در این راستا، سری زمانی ماهانه مصرف آب شهر رشت طی سال‌های 1380 تا 1387 مورد استفاده قرار گرفت. به‌منظور ایجاد الگوی SARIMA، کاربرد آزمون ریشه واحد مدنظر قرار گرفت. نتایج بیانگر وجود ریشه‌ها در تمامی فراوانی‌ها برای سری زمانی ماهانه مصرف آب شرب شهر رشت بود. از این رو، با انتخاب فیلتر مناسب، برازش الگوهای SARIMA انجام شد. پس از تعیین خروجی الگوی ANN، با استفاده از خروجی‌های الگوی SARIMA، ساختار الگوی هیبرید SARIMABP نیز ایجاد شد. پیش‌بینی مقدار مصرف آب شهر رشت برای ماه‌های سال 1388 با استفاده از سه الگوی یادشده گویای برتری و قدرت پیش‌بینی بالای الگوی هیبرید SARIMABP بود به‌طوری که شاخص‌های دقت پیش‌بینی مقدار خطای 41/0 درصد را برای این الگو نشان داد. از سوی دیگر، دو الگوی SARIMA و ANN نیز با خطای پیش‌بینی کمتر از یک درصد نتایج مطلوبی را برای استفاده مدیران شهری فراهم نموده است.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Evaluation of Seasonal, ANN, and Hybrid Models in Modeling Urban Water Consumption A Case Study of Rash City
چکیده انگلیسی مقاله Forecasting future water consumption in cities to plan for the required capacities in urban water supply systems (including water transmission networks and water treatment facilities) depends on the application of behavioral models of uban water consumption. Being located in the North-South corridor, Rasht City is assuming a new role to play in the national economy as a foreign trade center. It will, thus, be necessary to review its present urban infrastructure in order to draft the required infrastructural development plans for meeting the city’s future water demands. The three Seasonal Autoregressive Integrated Moving Average (SARIMA), Artificial Neural Network (ANN), and SARIMABP approaches were employed in present study to model and forecast Rasht urban water consumption using monthly time series for the period 2001‒2008 of urban water consumption in Rasht. The seasonal unit root test was applied to develop the relevant SARIMA model. Results showed that all the seasonal and non-seasonal unit roots are present in all the frequencies in the monthly time series for Rasht urban water consumption. Using a proper filter, the SAIMA patterns were estimated. In a second stage the SARIMA output was used to determine the ANN output and the hybrid SARIMABP structure was accordingly constructed. The values for Rasht urban water consumption predicted by the three models indicated the superiority of the SARIMABP hybrid model as evidenced by the forecast error index of 0.41% obtained for this model. The other two models of SARIMA and ANN were, however, found to yield acceptable results for urban water managers since the forecasting error recorded for them was below 1%.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله سیدنعمت اله موسوی |
دانشیار گروه اقتصادکشاورزی، دانشگاه آزاد اسلامی واحد مرودشت
سازمان اصلی تایید شده: دانشگاه آزاد اسلامی مرودشت (Islamic azad university of marvdasht)

محمد کاوسی کلاشمی | kavoosi kalashami
استادیار گروه اقتصاد کشاورزی، دانشکده علوم کشاورزی، دانشگاه گیلان
سازمان اصلی تایید شده: دانشگاه گیلان (Guilan university)


نشانی اینترنتی http://www.wwjournal.ir/article_13996_ee0d6d9c4caf20cbc06c0a2ce6906351.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات