این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
Iranian Journal of Medical Physics
، جلد ۱۶، شماره ۳، صفحات ۲۴۱-۲۴۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Breast Cancer Diagnosis from Perspective of Class Imbalance
چکیده انگلیسی مقاله
Introduction: Breast cancer is the second cause of mortality among women. Early detection is the only rescue to reduce the risk of breast cancer mortality. Traditional methods cannot effectively diagnose tumor since they are based on the assumption of well-balanced dataset.. However, a hybrid method can help to alleviate the two-class imbalance problem existing in the diagnosis of breast cancer and establish a more accurate diagnosis. Material and Methods: The proposed hybrid approach was based on improved Laplacian score (LS) andK-nearest neighbor (KNN) algorithms called LS-KNN. An improved LS algorithm was used for obtaining the optimal feature subset. The KNN with automatic K was utilized for classifying the data which guaranteed the effectiveness of the proposed method by reducing the computational effort and making the classification more faster. The effectiveness of LS-KNN was also examined on two biased-representative breast cancer datasets using classification accuracy, sensitivity, specificity, G-mean, and Matthews correlation coefficient. Results: Applying the proposed algorithm on two breast cancer datasets indicated that the efficiency of the new method was higher than the previously introduced methods. The obtained values of accuracy, sensitivity, specificity, G-mean, and Matthews correlation coefficient were 99.27%, 99.12%, 99.51%, 99.42%, respectively. Conclusion: Experimental results showed that the proposed approach worked well with breast cancer datasets and could be a good alternative to the well-known machine learning methods
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
| Jue Zhang
Scholl of Information and Technology, Northwest University, Xi'an,China
| Li Chen
shool of Information and Technology, Northwest Nniversity, Xi'an, Chian
نشانی اینترنتی
http://ijmp.mums.ac.ir/article_11544.html
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/145/article-145-1442334.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Paper
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات