این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Medical Physics، جلد ۱۵، شماره Special Issue-۱۲th. Iranian Congress of Medical Physics، صفحات ۲۴۶-۲۴۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Machine learning based Visual Evoked Potential (VEP) Signals Recognition
چکیده انگلیسی مقاله Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine learning techniques in interdisciplinary fields, deployment of machine learning in the brain electrical activity fields results in use of less expensive databases and prevention of duplication and forgery of activities.   Materials and Methods: In this study 54 normal Visual evoked potentials and 16 abnormal VEPs have been used. Signals have been classified via two main supervised learning methods, neural network and support vector machine.   Results: The results of these supervised learning techniques have been compared with similar models post feature extraction carried out by Daubechies wavelet feature extraction. Results indicate best error rate of %1.45 in SVM and %7.25 in neural network prior to feature selection via wavelet. After applying wavelet transform, SVM accuracy increased to %100 accuracy and %94.22.   Conclusion: The choice of a suitable feature selection method besides SVM and neural network can prove to be highly compatible in the field of brain electrical activity fields.
کلیدواژه‌های انگلیسی مقاله VEP, Support Vector Machine, Neural Network, Wavelet

نویسندگان مقاله | Sara Hashemi
Ph.D. Student, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.


| and Mohammad Saber Hashemi
M.Sc. Student, School of Mechanical Engineering, College 2 of Engineering Schools, University of Tehran. Tehran, Iran.



نشانی اینترنتی http://ijmp.mums.ac.ir/article_12876.html
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Conference Proceedings
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات