این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
Iranian Journal of Chemistry and Chemical Engineering
، جلد ۳۷، شماره ۵، صفحات ۱۸۹-۱۹۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds
چکیده انگلیسی مقاله
In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method for training data. The accuracy of the Genetic Algorithm boosted Least Square Support Vector Machine was compared with four empirical equations that are well-known and are claimed can predict all compounds second virial coefficients (Pitzer, Tesonopolos, Gasanov RK and Long Meng). Results showed that in all classes of compounds, the Genetic Algorithm boosted Least Square Support Vector Machine method was more accurate than these empirical correlations. The Average Relative Deviation percentage of overall data set was 2.53 for the Genetic Algorithm boosted Least Square Support Vector Machine model while the best Average Relative Deviation percentage for empirical models (Tesonopolos) was 15.38. When the molecules become more complex, the difference in accuracy becomes sharper for empirical models where the proposed Genetic Algorithm boosted Least Square Support Vector Machine model have predicted good results for classes of compounds that empirical correlations usually fail to give good estimates.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
Mohammad Soleimani Lashkenar |
Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, 4616849767 Amol, I.R. IRAN
Bahman Mehdizadeh |
National Iranian South Oil Company, Ahwaz, I.R. IRAN
Kamyar Movagharnejad |
Faculty of Chemical Engineering, Babol University of Technology, Babol, I.R. IRAN
نشانی اینترنتی
http://www.ijcce.ac.ir/article_35430_5bc9677dc3a4a53be50f2800c5af8fbc.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/444/article-444-1567026.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات