این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 22 آذر 1404
تحقیقات آب و خاک ایران
، جلد ۴۵، شماره ۴، صفحات ۳۸۹-۳۹۶
عنوان فارسی
طراحی شبکه پایش سطح آب زیرزمینی با استفاده از مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM)
چکیده فارسی مقاله
این مطالعه روشی برای طراحی شبکههای پایش کمّی آب زیرزمینی به منظور کاهش نقاط پایش مکانی اضافی ارائه میکند؛ چاههای اضافی، که اگر نمونهگیری نشوند، خطای تخمین سطح آب زیرزمینی آنها قابل چشمپوشی است. این روش مبتنی بر روش ماشین بردار پشتیبان بر پایه تئوری یادگیری آماری است. در این مطالعه، با استفاده از اطلاعات کمّی 63 چاه مشاهداتی و پارامترهای هواشناسی (بارندگی و تبخیر) دشت رامهرمز، در دوره 7 ساله، عملکرد مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM) در طراحی شبکه برداشت چاههای مشاهداتی آب زیرزمینی بررسی شد. ترکیبهای مختلف پارامترهای اثرگذار بر تراز سطح آب زیرزمینی با استفاده از مدل LS-SVM ارزیابی شد. ترکیب برتر مدل LS-SVM دربرگیرنده شاخصهای عملکرد (3405/0MAE=و 9992/0= 2R) است. سپس، با استفاده از تابع تقریب بهینه، 42 عدد چاه مشاهداتی به منظور پایش مکانی مناسب در منطقه دشت رامهرمز مشخص شد.
کلیدواژههای فارسی مقاله
تابع تقریب، دشت رامهرمز، مدلسازی آب زیرزمینی، نقاط پایش،
عنوان انگلیسی
Design of Groundwater Level Monitoring Network, Using the Model of Least Squares Support Vector Machine (LS-SVM)
چکیده انگلیسی مقاله
The present study presents a methodology for the design of long-term groundwater head monitoring networks to reduce spatial redundancy in which the additional wells if not sampled, the error related to groundwater level estimation would be negligible. This method is based on Support Vector Machine, and founded upon the statistical learning theory. Throughout the study, some 63 quantitative data, observation wells as well as meteorological parameters (precipitation and evaporation) of Ramhormoz plain (in a 7-year period) were employed to evaluate the performance of Least Squares Support Vector Machine model (LS-SVM) in the groundwater observation well network design concept. Different combinations of parameters affecting the ground water level were assessed using the model LS-SVM. The optimal combination of LSSVM model with RBF Kernel function carries such performance parameters as R2=0.9992, MAE=0.3405. Then, using Function Approximation Optimum, a number of 42 observation wells were pinpointed to apply the appropriate spatial monitoring in the plain of RAMHORMOZ.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
الهام رضایی |
دانشجوی کارشناسی ارشد منابع آب دانشگاه بیرجند
سازمان اصلی تایید شده
: دانشگاه بیرجند (Birjand university)
عباس خاشعی سیوکی |
استادیار گروه مهندسی آب دانشگاه بیرجند
سازمان اصلی تایید شده
: دانشگاه بیرجند (Birjand university)
علی شهیدی |
استادیار گروه مهندسی آب دانشگاه بیرجند
سازمان اصلی تایید شده
: دانشگاه بیرجند (Birjand university)
نشانی اینترنتی
http://ijswr.ut.ac.ir/article_52591_7662c67dbe764f0e2bec6f3127cf75a9.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات