این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
تولید محصولات زراعی و باغی، جلد ۱۱، شماره ۴۲، صفحات ۳۵۷-۳۶۴

عنوان فارسی پیش‌بینی بیشینه دمای هوای استان خوزستان بر اساس داده‌های ماهواره نوا و مدل شبکه عصبی مصنوعی
چکیده فارسی مقاله مدل‌های پیش‌بینی دمای هوا با استفاده از داده‌های ماهواره‌ای، مبتنی بر متغیرهای دمای سطح زمین و شاخص پوشش گیاهی هستند. این متغیرها با اعمال تصحیحات اتمسفری بر روی داده‌های فوق تعیین می‌شوند. میزان بخار آب، اوزن و عمق اپتیکی ذرات معلق در جو از داده‌های مورد نیاز برای تصحیح اتمسفری باندهای مرئی هستند ولی در اغلب مناطق ایران، این پارامترها اندازه‌گیری نمی‌شوند. هم‌چنین با استفاده از روش‌های موجود، دمای سطح زمین تا دقت 2 درجه سانتی‌گراد تعیین می‌شود. در این تحقیق با توجه به محدودیت‌های فوق، دقت پیش‌بینی دمای بیشینه هوا با استفاده از داده‌های بدون تصحیح اتمسفری شده ماهواره نوا و مدل شبکه عصبی مورد بررسی قرار گرفت. برای این منظور، مدل‌های مختلف شبکه عصبی، حاصل از ترکیب‌های مختلف داده‌های 4 باند ماهواره نوا و 3 متغیر جغرافیایی به عنوان ورودی‌های مدل ساخته شدند و بهترین مدل انتخاب شد. نتایج نشان داد، مدل شبکه عصبی با ساختار 6 نرون در لایه ورودی (شامل 4 باند ماهواره نوا، روز شمار سال و ارتفاع زمین) و 19 نرون در لایه پنهان بهترین مدل می‌باشد. در این ساختار حدود 4/91 درصد نتایج در محدوده دقت 3 درجه سانتی‌گراد واقع شدند و معیارهای آماریRMSE ، R2 و MBE به ترتیب 62/0، 7/1 درجه سانتی‌گراد و 01/0- درجه سانتی‌گراد می‌باشند.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Estimating Maximum Air Temperature in Khoozestan Province Using NOAA Satellite Images Data and Artificial Neural Network
چکیده انگلیسی مقاله Air temperature prediction models using satellite data are based on two variables of land surface temperature and vegetation cover index. These variables are obtained by atmospheric corrections in the values for the above data. Water vapor, ozone, and atmospheric aerosol optical depth are required for the atmospheric correction of visible bands. However, no measurements are available for these parameters in most locations of Iran. Using the common methods, land surface temperature can be measured accurately at 2 ° C. Given these limitations, efforts are made in this study to evaluate the accuracy of predicting maximum air temperature when uncorrected atmospheric data from the NOAA Satellite are used by a neural network. For this purpose, various neural network models were constructed from different combinations of data from 4 bands of NOAA satellite and 3 different geographical variables as inputs to the model in order to select the best model. The results showed that the best neural network was the one consisting of 6 neurons as the input layer (including 4 bands of NOAA satellite, day of the year, and altitude) and 19 neurons in the hidden layer. In this structure, about 91.4% of the results were found to be accurate at 3 ° C and the statistical criteria of R2, RMSE, and MBE were found to be 0.62, 1.7 ° C, and -0.01 ° C, respectively.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله علی رحیمی خوب | a rahimi khoob


سید محمود رضا بهبهانی | s m r behbahani


محمدهادی نظری فر | m h nazarifar



نشانی اینترنتی http://jcpp.iut.ac.ir/browse.php?a_code=A-10-2-791&slc_lang=fa&sid=fa
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده عمومی
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات