این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 29 آذر 1404
تولید محصولات زراعی و باغی
، جلد ۱۱، شماره ۴۰، صفحات ۲۷-۳۷
عنوان فارسی
بررسی کاربرد مدلهای هوش محاسباتی در شبیه سازی و پیش بینی بهنگام جریانهای سیلابی
چکیده فارسی مقاله
در این تحقیق توانایی مدلهای شبکه عصبی مصنوعی جهت شبیه سازی رفتار هیدرولوژیکی آب در حوزههای آبخیز مورد بررسی قرار گرفته است. هدف اصلی تحقیق بررسی کاربرد انواع مختلف شبکههای عصبی مصنوعی جهت شبیه سازی جریان در یک حوزه آبخیز با چند ایستگاه هیدرومتری و پیش بینی بهنگام جریانهای سیلابی در پایین دست بوده است. منطقه مورد بررسی قسمت فوقانی رودخانه درونت (Derwent) میباشد که یکی از شاخههای اصلی رودخانه ترنت (Trent river)در ناحیه مرکزی انگلستان است. جریان سیلاب رودخانه 3، 6، 9 و 12 ساعت قبل از وقوع در محل ایستگاه هیدرومتری واتستندول (Whatstandwell) با استفاده از دادههای اندازهگیری شده در بالا دست پیش بینی گردیده است. سه نوع شبکه عصبی مختلف که عبارتاند از شبکه پرسپترون چند لایه(MLP network) ، شبکه برگشتی (Recurrent network)و شبکه برگشتی با تأخیر زمانی(Time lag recurrent network) بهصورت جداگانه مورد استفاده و ارزیابی قرار گرفتند. همچنین جهت بررسی تأثیر طول دادههای ورودی در کارایی مدلهای شبکه عصبی، شبیه سازیهای مختلف با استفاده از دادههای هیدرولوژیکی با طول و تعداد متفاوت مورد استفاده قرار گرفت. دادههای با فاصله اندازهگیری 30 دقیقهای با طول دورههای 1 ماه، 6 ماه و سه سال ( که تولید تعداد مشاهدههای متفاوتی را مینماید) بدین منظور مورد استفاده واقع شد. براساس نتایج بهدست آمده هرچند شبکههای عصبی مصنوعی بهصورت عمومی و کلی کارایی مناسبی را در شبیه سازی و پیش بینی دبی جریان از خود نشان دادهاند ولی نوع شبکه عصبی مصنوعی و نیز خصوصیات دادههای ورودی مدل خصوصاً دادههای آموزشی پارامترهای بسیار مهمی هستند که تأثیر عمدهای را روی خروجیهای مدل دارند.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Evaluation of the Application of Artificial Intelligence Model for Simulation and Real – Time Prediction of Flood Flow
چکیده انگلیسی مقاله
The potential of artificial neural network models for simulating the hydrologic behaviour of catchments is presented in this paper. The main purpose is the modeling of river flow in a multi-gauging station catchment and real time prediction of peak flow downstream. The study area covers the Upper Derwent River catchment located in River Trent basin. The river flow has been predicted (at Whatstandwell gauging station) using upstream measured data. Three types of ANN were used for this application: Multi-layer perceptron, Recurrent and Time lag recurrent neural networks. Data with different lengths (1 month, 6 months and 3 years) have been used, and flow with 3, 6, 9 and 12 hours lead-time has been predicted. In general, although ANN shows a good capability to model river flow and predict downstream discharge by using only upstream flow data, however, the type of ANN as well as the characteristics of the training data was found as very important factors affecting the efficiency of the results.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
محمدتقی دستورانی | m t dastorani
نشانی اینترنتی
http://jcpp.iut.ac.ir/browse.php?a_code=A-10-2-684&slc_lang=fa&sid=fa
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
عمومی
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات