این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۷، شماره ۳، صفحات ۳۵۵-۳۶۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
چکیده انگلیسی مقاله
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific features. Label-specific features means that each class label is supposed to have its own characteristics and is determined by some specific features that are the most discriminative features for that label. LIFT employs clustering methods to discover the properties of data. More precisely, LIFT divides the training instances into positive and negative clusters for each label which respectively consist of the training examples with and without that label. It then selects representative centroids in the positive and negative instances of each label by k-means clustering and replaces the original features of a sample by the distances to these representatives. Constructing new features, the dimensionality of the new space reduces significantly. However, to construct these new features, the original features are needed. Therefore, the complexity of the process of multi-label classification does not diminish, in practice. In this paper, we make a modification on LIFT to reduce the computational burden of the classifier and improve or at least preserve the performance of it, as well. The experimental results show that the proposed algorithm has obtained these goals, simultaneously.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
Sh kashef |
Intelligent Data Processing Laboratory (IDPL), Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
H. Nezamabadi-pour |
Intelligent Data Processing Laboratory (IDPL), Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
نشانی اینترنتی
http://jad.shahroodut.ac.ir/article_1260_9da5f5f53e2a6083281de204a1ac99d1.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/480/article-480-1674793.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات