این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 5 دی 1404
Journal of Computational and Applied Research in Mechanical Engineering - JCARME
، جلد ۹، شماره ۱، صفحات ۱۴۵-۱۵۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Identification of rotor bearing parameters using vibration response data in a turbocharger rotor
چکیده انگلیسی مقاله
Turbochargers are most widely used in automotive, marine and locomotive applications with diesel engines. To increase the engine performance nowadays, in aerospace applications also turbochargers are used. Mostly the turbocharger rotors are commonly supported over the fluid film bearings. With the operation, lubricant properties continuously alter leading to different load bearing capacities. This paper deals with the diagnostic approach for prediction of shaft unbalance and the bearing parameters using the measured frequency responses at the bearing locations. After validating the natural frequencies of the rotor finite element model with experimental analysis, the response histories of the rotor are recorded. The influence of the parameters such as bearing clearance, oil viscosity and casing stiffness on the unbalance response is studied. By considering three levels each for shaft unbalance and oil viscosity, the output data in terms of four statistical parameters of equivalent Hilbert envelopes in the frequency domain are measured. The data is inversely trained using Radial Basis Function (RBF) neural network model to predict the unbalance and oil viscosity indices from given output response characteristics. The outputs of the RBF model are validated thoroughly. This approach finds changes in the rotor bearing parameters from the measured responses in a dynamic manner. The results indicate that there is an appreciable effect of lubricant viscosity at two different temperatures compared to other parameters within the operating speed range. The identification methodology using the neural network is quite fast and reliable
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
RAJASEKHARA REDDY MUTRA |
DEPARTMENT OF MECHANICAL ENGINEERING,NATIONAL INSTITUTE OF TECHNOLOGY (NIT), ROURKELA, ODISHA, INDIA
Srinivas J |
Department of Mechanical Engineering, National Institute of Technology (NIT), Rourkela, odisha, India.
نشانی اینترنتی
http://jcarme.sru.ac.ir/article_901_9ac32e613558a9b75b06e2c3d86264ed.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/484/article-484-1716791.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات