این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Food Quality and Hazards Control، جلد ۶، شماره ۳، صفحات ۸۲-۹۲

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Predicting of the Quality Attributes of Orange Fruit Using Hyperspectral Images
چکیده انگلیسی مقاله Background: Hyperspectral image analysis is a fast and non-destructive technique that is being used to measure quality attributes of food products. This research investigated the feasibility of predicting internal quality attributes, such as Total Soluble Solids (TSS), pH, Titratable Acidity (TA), and maturity index (TSS/TA); and external quality attributes such as color components (L*, a*, b*) as well as Color Index (CI) of Valencia orange fruit using hyperspectral reflectance imaging in the range of 400-1000 nm. Methods: Oranges were scanned by the system in order to build full models for predicting quality attributes using partial least squares regression. Optimal wavelengths were identified using the regression coefficients from full models, which were used to build simplified models by multiple linear regression. The coefficient of determination of prediction (R2p) and the Standard Error of Prediction (SEP) were used to measure the performance of the models obtained. Results: Full models for internal quality attributes had low performance (R2p< 0.3, SEP>50%). Full models for external quality attributes presented a high performance for L* (R2p=0.898, SEP=19%), a* (R2p=0.952, SEP=13%), b* (R2p=0.922, SEP=20%), and CI (R2p=0.972, SEP=12%). The simplified models presented similar performance to those obtained for external quality attributes. Conclusion: Hyperspectral reflectance imaging has potential for predicting color of oranges in an objective and noncontact way. DOI: 10.18502/jfqhc.6.3.1381
کلیدواژه‌های انگلیسی مقاله Spectrum Analysis, Citrus, Quality Control, Food Technology

نویسندگان مقاله | V. Aredo
Food Engineering Graduate Program, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, 13635-900, Brazil


| L. Velásquez
Food Engineering Graduate Program, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, 13635-900, Brazil


| J. Carranza-Cabrera
Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo. Av. Juan Pablo II s/n. Ciudad Universitaria, Trujillo, Peru


| R. Siche
Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo. Av. Juan Pablo II s/n. Ciudad Universitaria, Trujillo, Peru



نشانی اینترنتی http://jfqhc.ssu.ac.ir/browse.php?a_code=A-10-779-1&slc_lang=en&sid=1
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/369/article-369-1871053.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده تخصصی
نوع مقاله منتشر شده Original article
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات