این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
تحقیقات آب و خاک ایران، جلد ۵۰، شماره ۶، صفحات ۱۴۶۷-۱۴۷۷

عنوان فارسی ارزیابی عملکرد روش‌های داده‌گرا در تخمین بار کل رسوبی رودخانه های شنی
چکیده فارسی مقاله انجام مطالعات فراوان در رابطه با انتقال رسوب و به‌ویژه پیش­بینی این پدیده نشانگر اهمیت بسیار بالای آن در علوم مرتبط با مهندسی و مدیریت منابع آب می­باشد. در این بین روش­های هوشمند در سال­های اخیر به طور موفقیت‌آمیزی در پیش­بینی بار بستر، بار معلق و همچنین بار کل رسوب به کار گرفته شده است. با این حال با توجه به کمبود داده­های مرتبط به بار کل برای رودخانه­های با بستر شنی، مطالعات انجام گرفته در این راستا محدود می­باشد. هدف از تحقیق حاضر استفاده از روش­های قدرتمند ماشین بردار پشتیبان، شبکه­ عصبی مصنوعی و رگرسیون فرآیند گاوسی به منظور پیش­بینی بار کل رسوب در 19 رودخانه شنی واقع در ایالات‌متحده آمریکا و مقایسه نتایج حاصل با روش­های کلاسیک مرسوم می­باشد. بدین منظور پارامترهای بدون بعد مختلفی مبتنی بر هیدرولیک جریان و مشخصات رسوب تعریف و عملکرد روش­های مذکور مورد ارزیابی قرار گرفت. با توجه به نتایج به دست آمده شبکه عصبی مصنوعی با دارا بودن ضریب همبستگی و معیار ناش- ساتکیف به ترتیب برابر با 952/0 R= و 903/0 NSE= برای داده­های صحت­سنجی از عملکرد بهتری نسبت به دو روش دیگر برخوردار می­باشد. در نهایت با انجام تحلیل حساسیت، پارامتر نسبت سرعت متوسط به سرعت برشی جریان به عنوان تأثیرگذارترین پارامتر در پیش­بینی بار کل رسوب معرفی شد.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Evaluating the Performance of Data-Driven Methods for Prediction of Total Sediment Load in Gravel-Bed Rivers
چکیده انگلیسی مقاله Numerous studies on sediment transport, especially prediction of this phenomenon, indicate its high importance in the sciences related to engineering and water resources management. In recent years, intelligent methods have been applied successfully to predict bed, suspended and total sediment load. However, due to the lack of measured data, limited researches have been done to deal with prediction of total load in gravel-bed rivers. The aim of this study is to apply Support Vector Machine (SVM), Artificial Neural Network (ANN) and Gaussian Process Regression (GPR) to predict total sediment load for 19 gravel-bed rivers and to compare the obtained results with well- known classic methods. For this purpose, different non-dimensional parameters based on hydraulic condition and sediment characteristics were defined and the performance of these methods was evaluated. According to the obtained results, the ANN model with correlation coefficient of R =0.952 and Nash–Sutcliffe efficiency (NSE=0.903) showed a better performance as compared to the other methods. Finally, by performing sensitivity analysis, the ratio of mean flow to shear velocity was introduced as the most effective parameter in predicting total sediment load.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله کیومرث روشنگر |
دانشیار گروه مهندسی عمران آب دانشگاه تبریز

سامان شهنازی |
گروه مهندسی آب، داشکده عمران، دانشگاه تبریز، تبریز، ایران


نشانی اینترنتی https://ijswr.ut.ac.ir/article_73217_6314e2be1c02a7f75d572aaa25db9d8c.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/684/article-684-2017606.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات