این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 3 دی 1404
فیزیک زمین و فضا
، جلد ۴۲، شماره ۲، صفحات ۲۸۱-۲۹۲
عنوان فارسی
بررسی سامانه های کارآمد در پیشبینی زلزله
چکیده فارسی مقاله
سیستمهای خبره معمولاً در امر پیشبینی زلزله استفاده میشوند. در این سیستمهای خبره از پارامترهای مختلفی مانند رفتار گسل، غلظت رادون، انرژی، پالس و تعداد ضربه استفاده میشود. با بررسی این پارامترها میتوان میزان رخداد زلزله را برآورد کرد. میزان دقت پیشبینی زلزله توسط این سیستمهای خبره نسبت به روشهای غیرهوشمند نسبتاً بالاتر است. در این مقاله ابتدا میزان دقت و نوع دادههای استفاده شده در انواع مختلف سیستمهای خبره در زمینه پیشبینی زلزله مورد مطالعه قرار گرفت. علاوه بر آن، پیشبینی زلزله با یک سیستم خبره مبتنی بر الگوریتمهای مختلف ماشین بردار پشتیبان، درخت تصمیمگیری، شبکه عصبی مصنوعی، ماشین بردار پشتیبان براساس بهینهسازی ازدحام ذرات، بیزین و شبکه پرسپترون چندلایه در محیط Rapidminer پیادهسازی شد. نتایج به دست آمده نشان داد که سیستم خبره مبتنی بر ماشین بردار پشتیبان که با الگوریتم ازدحام ذرات بهینه شده باشد نسبت به سیستمهای خبره مبتنی بر شبکه عصبی، ماشین بردار پشتیبان، بیزین، درخت تصمیمگیری و شبکه پرسپترون چندلایه دارای دقت پیشبینی بهتری است.
کلیدواژههای فارسی مقاله
پیشبینی، سیستم خبره، زلزله،
عنوان انگلیسی
Study of expert systems in predicting earthquake
چکیده انگلیسی مقاله
The crisis in the event of an incident or accident occurs suddenly and unexpectedly that urgent attention is needed for proper decision making. Despite technological advances, the suffering caused by natural disaster such as earthquake, flood, avalanche, hurricane, volcano, fire and there is abnormal. Mining activities are always risks with the risks of mine called, has been associated. Seismic hazard in underground mines is one of the threats to human life. Seismic hazard identification much more difficult to identify the natural hazards to an earthquake. Using advanced seismic earthquake and Seismoacoustic predict. The accuracy of the information generated is not optimal. The complexity of seismic processes and the disproportion between the low-energy seismic events and a number of high-energy phenomena (eg greater than 10 ^ 4 J) makes statistical techniques to predict the seismic hazard is not enough. So the search for better opportunities for risk prediction has become imperative. Clustering techniques for seismic hazard data and artificial neural networks were used to predict. In most applications, the results obtained by the methods listed in the situation "dangerous" and "safe" have been reported. Unbalanced distribution of positive samples (dangerous situation) and negative (safe condition), is a serious problem in seismic hazard forecasting. Currently, the methods used can not be expected to take appropriate and high sensitivity. A number of factors related to the risk of earthquakes, was proposed. Among other factors, the shake with energy greater than 10 ^ 4 J mentioned earthquake prediction can be defined with different methods. But the main goal is for all methods of seismic hazard assessment. In some cases, the data on the time and date, an increase in seismic activity that could lead to the destruction of rocks using pressure (Rockburst), the predicted. You can not focus on one parameter, occurrence or non-occurrence of earthquakes in the area or within the time limit specified. Should study several parameters at the same time be an acceptable technique for predicting earthquake found that one way to do this is to use expert system. The news systems provided that these systems have the ability to use more, better and smarter them. For example, in hydrology analysis only considered changes in water ions other parameters such as fault behavior, changes in sea level, etc., are not considered to predict earthquakes. On the other hand all expert systems to predict earthquakes from Precursor not use to predict. Some expert systems by the time information, location and depth of previous earthquakes, earthquakes predict the future. Studies have shown that large earthquakes decision tree and artificial neural network down accurately predicted. In this article by support vector machines based on particle swarm big earthquakes with higher accuracy than was some other expert systems.Expert systems commonly used in earthquake prediction. In these expert systems, various parameters are used such as fault behavior, the concentration of radon, energy, pulse and the number of bumps. The occurrence of earthquakes can be measured by checking these parameters. The accuracy of earthquake prediction by expert systems is relatively higher than non-expert system methods. In this paper, the accuracy and the kinds of data used in different expert systems in the field of earthquake prediction were studied. In addition, different algorithms to predict earthquake with an expert system based on support vector machines, decision trees, neural networks, support vector machines based on particle swarm optimization, Bayesian and MLP network was implemented in Rapidminer. The results show that support vector machine-based expert system that is optimized by particle swarm algorithm in comparison to neural network-based expert systems, support vector machines, Bayesian, decision tree and network MLP has a better prediction accuracy.
کلیدواژههای انگلیسی مقاله
earthquake, expert system, Prediction
نویسندگان مقاله
زینت مهدی دوست جلالی | mehdi doost jalali
دانشجو
اسدالله شاه بهرامی |
دانشیار گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه گیلان، رشت، ایران
سازمان اصلی تایید شده
: دانشگاه گیلان (Guilan university)
نشانی اینترنتی
https://jesphys.ut.ac.ir/article_56030_e74295b5e39020cc9402faf6165a6d1d.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1035/article-1035-205402.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات