این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
فیزیک زمین و فضا، جلد ۴۱، شماره ۳، صفحات ۴۵۳-۴۶۲

عنوان فارسی وارون‌سازی سه‌بعدی داده‌های گرانی‌سنجی در فضای داده با استفاده از قید فشردگی
چکیده فارسی مقاله در این مقاله وارون‌سازی داده‌های گرانی‌سنجی برای تعیین توزیع سه‌بعدی جرم زیر سطحی بررسی شده است. سطح زیرین در ناحیه برداشت داده‌های گرانی به تعداد زیادی مکعب با ابعاد ثابت تقسیم شده و وارون‌سازی به دنبال یافتن مقادیر چگالی برای هریک از این مکعب‌ها بوده است. تابع هدف به‌کار برده‌شده شامل عبارت عدم برازش داده‌ها و عبارت تنظیم است. کاربرد قید فشردگی در عبارت تنظیم فضای مدل را به سوی تُنکی سوق داده است. علاوه بر آن ماتریس‌های وزن‌دهی عمقی و قیود سخت نیز استفاده شده‌اند. از آنجایی که مسئله وارون یک مسئله فرومعین است، حل آن در فضای داده انجام پذیرفته که در مقایسه با فضای مدل، نیازمند حل سیستم معادلات خطی با ابعاد بسیار کوچک‌تر است. برای حل سیستم معادلات خطی از روش گرادیان مزدوج استفاده شده است. ترکیب گرادیان مزدوج با وارون‌سازی در فضای داده امکان حل مسائل با ابعاد بزرگ را فراهم می‌آورد. برنامه کامپیوتری نوشته‌شده برای برگردان داده‌های تولیدشده توسط یک مدل مصنوعی به کار رفته و مزایا و معایب روش نشان داده شده است. در انتها داده‌های گرانی برداشت‌شده روی معدن منگنز صفو واقع در شمال‌غرب ایران با استفاده از برنامه وارون‌سازی مذکور برگردان و مدل‌سازی شده‌اند. نتایج وارون‌سازی توزیع ماده معدنی با گسترش عمقی 5 تا 35-40 متری را نشان می‌دهد که با نتایج حفاری انطباق دارد.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی 3D data-space gravity inversion using compactness constraint
چکیده انگلیسی مقاله In this paper the 3D inversion of  gravity data is considered. The goal is to reconstruct models of subsurface density distribution using a set of known gravity observations measured on the earth surface. The subsurface under the survey area is divided into large number of rectangular blocks of known sizes and positions. The unknown density contrasts within each prism define the parameters to be estimated. This kind of parameterization is flexible for the reconstruction of the subsurface model, but requires more unknown model parameters than observations (here N << M, where N is the number of data and M is the number of model parameters). The final density distribution will be obtained by minimizing a global objective function consists of data misfit and a regularization term. The inverse problem is solved in data space, which needs inverse of matrix with N×N dimension, as compared with M×M  dimension system in model space inversion. This methodology was used by Pilkington (2009) in 3D inversion of magnetic data. To solve the resulting set of linear equation, the conjugate gradient method is used. Combination of data-space method with conjugate gradient leads to keep the storage and computational time to a minimum. The iteratively-defined regularization matrix, which is used in objective function, is a combination of three diagonal matrix; namely depth weighting, compactness and hard constraint matrices. The compactness constraint was introduced in Last and Kubik (1983) and developed in Portniaguine and Zhdanov (1999), who used term "minimum support stabilizer", is considered here to produce models with non-smooth features. It is a suitable and well-known constraint for identifying geologic structures which have material properties that vary over relatively short distances. The depth weighting matrix, introduced in Li and Oldenburg (1998),  is used in regularization term to counteract the natural decay of the kernel with depth. The hard constraint allows us to incorporated priori geological and geophysical information into inversion process. While depth weighting and hard constraint matrices both are independent of the iteration index, the compactness depends on iterations. In order to recover a feasible image of the subsurface, realistic lower and upper density bounds are imposed during the inversion process. The computer program is written in MATLAB and tested on synthetic data produced by a model consists of two cubes. The cubes have same dimension and density, but located at different depths. The results indicate that the algorithm is efficient to handle large-scale gravity inverse problems. For the shallow cube the geometry and density of the reconstructed model are close to those of the original model, but for the deeper body the resolution decrease and a smooth image of  subsurface obtained. The gravity data acquired over the Safo mining camp in the north-west of Iran, which is well-known for manganese ores, are used as a real modeling case. The results show a density distribution in the subsurface from about 5 to 35-40 m in depth and about 35 m extent in the x direction, which are close to those obtained by bore-hole drilling on the site.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله زینب عباس زاده |
کارشناس ارشد ژئوفیزیک، دانشگاه آزاد اسلامی، همدان، ایران
سازمان اصلی تایید شده: دانشگاه آزاد اسلامی همدان (Islamic azad university of hamadan)

سعید وطن خواه |
دکتری ژئوفیزیک، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران
سازمان اصلی تایید شده: دانشگاه تهران (Tehran university)

وحید ابراهیم زاده اردستانی | ebrahimzade ardestani
استاد، گروه فیزیک زمین، مؤسسه ژئوفیزیک دانشگاه تهران و قطب علمی مهندسی نقشه برداری و مقابله با سوانح طبیعی، تهران، ایران
سازمان اصلی تایید شده: دانشگاه تهران (Tehran university)


نشانی اینترنتی https://jesphys.ut.ac.ir/article_53698_af0d0a99e175a3ec6524e7cb7c25b13b.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1035/article-1035-205456.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات