این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 2 دی 1404
ماشین بینایی و پردازش تصویر
، جلد ۲، شماره ۲، صفحات ۵۱-۶۲
عنوان فارسی
آستانه گذاری بهینه چندسطحی تصویر با استفاده از الگوریتم بهینه سازی مبتنی بر یادگیری و تدریس
چکیده فارسی مقاله
آستانه گذاری تصاویر یک از محبوبترین روشهای قطعه بندی تصاویر است. در این روش، برای مشخص کردن مقادیر آستانه از هیستوگرام استفاده می شود. در این مقاله، یک روش آستانه گذاری چندسطحی برای قطعه بندی تصاویر مبتنی بر هیستوگرام با استفاده از الگوریتم بهینه سازی مبتنی بر یادگیری و تدریس ارائه شده است. این الگوریتم یک الگوریتم جمعیتگرای جدید است که از تاثیری که یک استاد بر دانش آموزان خود دارد الهام گرفته است. تابع هزینه مورد استفاده در این پژوهش، معیار بیشینه سازی آنتروپی کاپور بوده است. کارایی روش پیشنهادی بر روی 5 تصویر استاندارد مورد بررسی قرار گرفته است. همچنین کارایی آن با سه الگوریتم ژنتیک (GA)، بهینه سازی ذرات (PSO) و تکامل تفاضلی (DE) مقایسه شده است. نتایج نشان می دهد که الگوریتم بهینه سازی مبتنی بر یادگیری و تدریس نتایج بهتری در توابع برازندگی، مقدار PSNR، SSIM و پایداری فراهم آورده است. زمان یافتن مقادیر آستانه برای این الگوریتم نیز نسبت به الگوریتم PSO بیشتر اما نسبت به GA و DE کمتر است.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Optimal Multilevel image thresholding using the teaching-learning-based optimization
چکیده انگلیسی مقاله
Image thresholding is a popular method for image segmentation. Histogram is used for image segmentation in image thresholding. In this paper, a multilevel image thresholding is proposed based on teaching-learning-based optimization (TLBO). TLBO is a new population-based metaheuristic inspired by learners and teacher in a classroom. The optimal thresholds are found by maximizing Kapur’s (entropy criterion) thresholding function. The performance of TLBO is explained by considering five images. In addition, the performance is compared with three well known population-based metaheuristics: particle swarm optimization(PSO), genetic algorithm (GA), and differential evolution (DE). Results show that TLBO presents the better performance in terms of fitness value, peak signal to noise ratio (PSNR), Structural-Similarity index (SSIM), and stability.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
سید جلال الدین موسوی راد | seyed jalaleddin
دانشجوی دکتری، دانشکده مهندسی برق و کامپیوتر، دانشگاه کاشان
سازمان اصلی تایید شده
: دانشگاه کاشان (Kashan university)
حسین ابراهیم پور کومله |
دانشکده مهندسی برق و کامپیوتر، دانشگاه کاشان
سازمان اصلی تایید شده
: دانشگاه کاشان (Kashan university)
نشانی اینترنتی
http://jmvip.sinaweb.net/article_12011_40079b7933c8837da373f0edbd4c865e.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1041/article-1041-205796.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات