این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۳۱، شماره ۶، صفحات ۹۱۰-۹۱۵

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Radon-based Convolutional Neural Network for Medical Image Retrieval
چکیده انگلیسی مقاله Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known technology in medical field, is utilized along with a deep network to propose a retrieval system for a highly imbalanced medical benchmark. The main contribution of this study is to propose a deep model which is trained on the Radon-based transformed input data. The experimental results show that applying this transformation as input to feed into a convolutional neural network, significantly increases the performance, compared with other retrieval systems. The proposed scheme clearly increases the retrieval performance, compared with almost all models which use Radon transformation to retrieve medical images.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Abbas Khosravi |
Deakin University, Institute for Intelligent System Research and Inno

Hamid R. Tizhoosh |
University of Waterloo, KIMIA Lab, Canada

Morteza Babaie |
University of Waterloo, KIMIA Lab, Canada

Amin Khatami |
Deakin University, Institute for Intelligent System Research and Innovation

Saeid Nahavandi |
Deakin University, Institute for Intelligent System Research and Inno


نشانی اینترنتی http://www.ije.ir/article_73197_06722a8084cc0c59e371a0e46f1354d9.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات