این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۲۹، شماره ۱۱، صفحات ۱۵۵۸-۱۵۶۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
چکیده انگلیسی مقاله Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal prediction, based on Neural Networks and Particle Swarm Optimization algorithm. Elman Neural Network is chosen from amongst many types of Neural Networks due to its feedbacked structure. To this purpose, Particle Swarm optimization algorithm is utilized for adequate training of the Neural Network, instead of common gradient descent based methods. In this work, wavelet transform is employed as a part of the preprocessing stage, for the elimination of transient phenomena as well as for more efficient training of the Neural Network. Simulations are carried out to verify performance of the proposed method, and the results demonstrate good performance in comparison to other methods.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Jamal Ghasemi |
Engineering and Technology, University of Mazandaran

Jalil Rasekhi |
Faculty of Electrical and Computer Engineering, Babol University of Technology


نشانی اینترنتی http://www.ije.ir/article_72826_4ca4d8aaaf0cf6b8534543217cec2e14.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2062207.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات