این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۲۷، شماره ۷، صفحات ۱۰۱۵-۱۰۲۲

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
چکیده انگلیسی مقاله It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we propose an improved method using time-varying autoregressive (TVAR) model, integral, basic generalized likelihood ratio (GLR) and new particle swarm optimization (NPSO) which is a powerful intelligence optimizing. Since autoregressive (AR) model for the GLR method is valid for only stationary signals, the TVAR as a valuable and powerful tool for non-stationary signals is suggested. Moreover, to improve the performance of the basic GLR and increase the speed of that, we propose to use moving steps more than one sample for successive windows in the basic GLR method. By using synthetic and real EEG data, the proposed method is compared with the conventional ones, i.e. the GLR and wavelet GLR (WGLR). The simulation results indicate the absolute advantages of the proposed method.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Hamed Azami |
, IUST

Hamid Hassanpour |


Mahmoud Anisheh |
ELECRONICS & COMMUNICATION, KNT


نشانی اینترنتی http://www.ije.ir/article_72334_f091a002d31c57edc1065a7f7fc2acdc.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2062685.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات