این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
پژوهش های نوین در تصمیم گیری، جلد ۴، شماره ۳، صفحات ۱۲۷-۱۵۳

عنوان فارسی توسعه شبکه عصبی‌تصمیم مبتنی بر الگوریتم ژنتیک برای ارزیابی ارجحیات‌ در مسائل تصمیم‌گیری چندهدفه
چکیده فارسی مقاله بکارگیری شبکه‌های عصبی در تخمین و توصیف ساختار ارجحیت‌های تصمیم‌گیرنده، در حل مسائل تصمیم‌گیری چندهدفه در سال‌های اخیر بسیار مورد توجه قرار گرفته ‌است. شبکه عصبی تصمیم رویکردی نوین برای تخمین تابع مطوبیت تصمیم‌گیرنده در مسایل چندهدفه است. توسعه و بهبود روش‌های آموزش این نوع از شبکه‌ها، یافتن راه حل مرجح در مسایل چندهدفه، به خصوص مسایل با ابعاد بزرگ را تسهیل می‌نماید. در این مقاله، به منظور غلبه بر مشکلات روش‌های آموزشی مبتنی بر گرادیان و با هدف افزایش کارآیی شبکه عصبی تصمیم روش آموزشی آن توسعه داده شده ‌است و از الگوریتم ژنتیک برای آموزش این شبکه عصبی استفاده می‌شود. برای تنظیم پارامترهای شبکه عصبی تابع هزینه بهبود یافته‌ای پیشنهادی می‌شود و بر اساس این تابع هزینه پارامترهای شبکه عصبی بهینه‌سازی می‌شوند. رویکرد پیشنهادی در حل چندین مثال کاربردی بکارگرفته شده‌است که نتایج نشان می‌دهند که رویکرد پیشنهادی روشی کارآ به منظور تخمین تابع مطلوبیت –به‌خصوص غیرخطی- در حل مسائل تصمیم‌گیری چندهدفه می‌باشد. همچنین رویکرد پیشنهادی در تخمین توابع مطلوبیت مسائل چندهدفه گسسته نیز قابلیت بکارگیری دارد.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Development of a Genetic Algorithm-based Decision Neural Network for the Preference Assessment in Multi-objective Decision-Making Problems
چکیده انگلیسی مقاله The application of neural networks in estimating and describing the structure of decision makers' priorities has been very much considered in solving multi-objective decision problems in recent years. The neural network is a new approach to estimate the decision-making function of a multi-objective problem. Developing and improving the teaching methods of these types of networks facilitate to find the preferred solution in multi-dimensional issues, especially large-scale issues. In this paper, the educational method is developed to increase the efficiency of a neural network. In addition, a genetic algorithm is used to train this neural network. Furthermore, an improved cost function is proposed to adjust the parameters of the neural network and based on this function the cost parameters of the neural network are optimized. The efficiency of the proposed method is shown in solving several practical examples, including linear/nonlinear and discrete/continuous optimization problems. The efficiency of the proposed method is shown in solving several practical examples, including linear/nonlinear and discrete/continuous optimization problems.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله محدثه نادرشاهی |
دانشجوی دکتری، گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران

اعظم دخت صفی صمغ آبادی |
استادیار گروه مهندسی صنایع، بخش فنی و مهندسی، دانشگاه پیام نور، تهران، ایران

رضا توکلی مقدم |
استاد دانشکده مهندسی صنایع، پردیس دانشکده های فنی، دانشگاه تهران، ایران


نشانی اینترنتی http://journal.saim.ir/article_36758_6d5a83f3e7b77b572953d9ef66a22816.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1432/article-1432-2066943.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات