این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
مدیریت فناوری اطلاعات
، جلد ۱۱، شماره ۲، صفحات ۴۳-۵۸
عنوان فارسی
Text Analytics of Customers on Twitter: Brand Sentiments in Customer Support
چکیده فارسی مقاله
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of intense competition. In this research, there has been an attempt to collect near three million tweets of inbound customer requests and outbound brand responses of international enterprises for the purpose of brand sentiment analysis. The steps of CRISP-DM have been chosen as the reference guide for business and data understanding, data preparation, text mining, validation of results as well as the final discussion and contribution. A rich phase of text pre-processing has been conducted and various algorithms of sentiment analysis were applied for the purpose of achieving the most significant analytical conclusions over the sentiment trends. The findings have shown that the sentiment of customers toward a brand is significantly correlated with the proper response of brands to the brand community over social media as well as providing the customers with a deep feeling of reciprocal understanding of their needs in a mid-to-long range planning.
کلیدواژههای فارسی مقاله
Brand community،، Sentiment analysis،، Text mining،، Twitter،، Customer support،
عنوان انگلیسی
Text Analytics of Customers on Twitter: Brand Sentiments in Customer Support
چکیده انگلیسی مقاله
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of intense competition. In this research, there has been an attempt to collect near three million tweets of inbound customer requests and outbound brand responses of international enterprises for the purpose of brand sentiment analysis. The steps of CRISP-DM have been chosen as the reference guide for business and data understanding, data preparation, text mining, validation of results as well as the final discussion and contribution. A rich phase of text pre-processing has been conducted and various algorithms of sentiment analysis were applied for the purpose of achieving the most significant analytical conclusions over the sentiment trends. The findings have shown that the sentiment of customers toward a brand is significantly correlated with the proper response of brands to the brand community over social media as well as providing the customers with a deep feeling of reciprocal understanding of their needs in a mid-to-long range planning.
کلیدواژههای انگلیسی مقاله
Brand community, Sentiment analysis, Text mining, Twitter, Customer support
نویسندگان مقاله
Iman Raeesi Vanani |
Assistant Professor, Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran.
نشانی اینترنتی
https://jitm.ut.ac.ir/article_73947_747d047bc425a285c11b5143ddc3697a.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات