این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 28 آذر 1404
مهندسی حمل و نقل
، جلد ۴، شماره ۳، صفحات ۲۳۳-۲۴۶
عنوان فارسی
رویکردی نو در بررسی پیش بینی پذیری ترافیک شهری مبتنی بر تئوری آشوب و پیش بینی جریان ترافیک شهر مشهد مبتنی بر سیستم فازی- عصبی تطبیقی چندگانه
چکیده فارسی مقاله
پیش بینی کوتاه مدت پارامترهای ترافیکی مانند جریان ترافیک، سرعت و ازدحام، دارای اهمیت بسیاری در پژوهشهای حوزه سیستمهای حمل ونقل هوشمند مدرن است. در این مقاله، ابتدا با بکارگیری تئوری آشوب به بررسی پیشبینی پذیری جریان ترافیک شهری پرداخته شده و غیرتصادفی بودن سری زمانی حجم ترافیک مورد بررسی قرار گرفته است. سپس، در حوزه پیشبینی، با توجه به این نکته که یکی از مهمترین مشکلات در هنگام پیشبینی وضعیت آینده ترافیک، ناقص بودن دادهها به علل مختلف است، الگوریتم ارایه شده در این مقاله با بکارگیری روشهای پیش پردازش، سعی بر کاهش تأثیر دادههای معیوب دارد. همچنین در فاز پیشپردازش، دستهبندیهای مناسب با درنظرگرفتن تاثیرات پارامترهای اجتماعی بر جریان ترافیک، صورت گرفته است. در بخش بعد و به منظور پیشبینی جریان ترافیک، با توجه به ویژگیهای تطبیقپذیری، الگوریتمهای خودیادگیر شبکههای عصبی و نیز یادگیری قوانین فازی که در ساختار ANFIS ترکیب شده است، از این مدل برای پیشبینی کوتاهمدت حجم ترافیک استفاده شده است. مدل مطرح شده در این مقاله، برای پیشبینی جریان ترافیک موجود در بلوار فرامرزعباسی در شهر مشهد در کشور ایران مورد استفاده قرار گرفته است. مقایسه نتایج مقادیر پیش بینی شده جریان ترافیک با مقادیر اندازه گیری شده در واقعیت، نتایج نشان می دهد که مدل مطرح شده به طور رضایت بخشی جریان ترافیک را پیشبینی می کند.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A New Method in Studying Urban Traffic Predictability Based on Chaos Theory and Prediction of Mashhad Traffic Flow Based on Multiple ANFIS
چکیده انگلیسی مقاله
Short-term prediction of traffic parameters such as traffic flow, speed and occupancy, have an important role in research fields of modern intelligent transportation systems. In this paper, first of all, traffic flow predictability was studied, based on chaos theory, and chaotic properties of traffic volume time-series were evaluated on the basis of Lyapunov exponent. In the prediction module, since the major problem is corrupted and noisy data due to various reasons, effect of corrupted data was reduced by preprocessing techniques. In the next step, suitable classifications were considered, based on the effects of social factors on the traffic volume. In order to predict traffic flow, according to adaptability features, self learning algorithms of neural networks and also comprehensibility of fuzzy rules which are all combined in ANFIS structure were used. The model proposed in this paper is applied to predict the real traffic flow in Ferdowsi Boulevard, Mashhad city, Iran. Comparing the predicted traffic flow value with the flow measured in reality, the results show that the proposed model can predict traffic flow satisfactorily.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
نشانی اینترنتی
http://jte.sinaweb.net/article_3811_1803df106c4b61effd8edf7a730b5634.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1231/article-1231-223481.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات