این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
فیزیک زمین و فضا، جلد ۴۵، شماره ۴، صفحات ۱۵-۲۵

عنوان فارسی Center of Mass Estimation of Simple Shaped Magnetic Bodies Using Eigenvectors of Computed Magnetic Gradient Tensor
چکیده فارسی مقاله Computed Magnetic Gradient Tensor (CMGT) includes the first derivatives of three components of magnetic field of a body. At the eigenvector analysis of Gravity Gradient Tensors (GGT) for a line of poles and point pole, the eigenvectors of the largest eigenvalues (first eigenvectors) point precisely toward the Center of Mass (COM) of a body. However, due to the nature of the magnetic field, it is shown that these eigenvectors for the similar shaped magnetic bodies (line of dipoles and point-dipole), in CMGT, are not convergent to COM anymore. Rather, in the best condition, when there is no remanent magnetization and the body is in the magnetic poles, their directions are a function of data point locations. In this study, by reduction to the pole (RTP) transformation and calculation of CMGT, a point is estimated that its horizontal components are exactly the horizontal components of the COM and its vertical component is a fraction of the COM vertical component. These obtained depth values are 0.56 and 0.74 of COM vertical components for a line of dipoles and point-dipole, respectively. To reduce the turbulent effects of noise, “Moving Twenty five Point Averaging” method and upward continuation filter are used. The method is tested on solitary and binary simulated data for bodies with varying physical characteristics, inclinations and declinations. Finally, it is imposed on two real underground examples; an urban gas pipe and a roughly spherical orebody and the results confirm the methodology of this syudy.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Center of Mass Estimation of Simple Shaped Magnetic Bodies Using Eigenvectors of Computed Magnetic Gradient Tensor
چکیده انگلیسی مقاله Computed Magnetic Gradient Tensor (CMGT) includes the first derivatives of three components of magnetic field of a body. At the eigenvector analysis of Gravity Gradient Tensors (GGT) for a line of poles and point pole, the eigenvectors of the largest eigenvalues (first eigenvectors) point precisely toward the Center of Mass (COM) of a body. However, due to the nature of the magnetic field, it is shown that these eigenvectors for the similar shaped magnetic bodies (line of dipoles and point-dipole), in CMGT, are not convergent to COM anymore. Rather, in the best condition, when there is no remanent magnetization and the body is in the magnetic poles, their directions are a function of data point locations. In this study, by reduction to the pole (RTP) transformation and calculation of CMGT, a point is estimated that its horizontal components are exactly the horizontal components of the COM and its vertical component is a fraction of the COM vertical component. These obtained depth values are 0.56 and 0.74 of COM vertical components for a line of dipoles and point-dipole, respectively. To reduce the turbulent effects of noise, “Moving Twenty five Point Averaging” method and upward continuation filter are used. The method is tested on solitary and binary simulated data for bodies with varying physical characteristics, inclinations and declinations. Finally, it is imposed on two real underground examples; an urban gas pipe and a roughly spherical orebody and the results confirm the methodology of this syudy.
کلیدواژه‌های انگلیسی مقاله Computed Magnetic Gradient Tensor, Center of Mass, First Eigenvectors

نویسندگان مقاله kurosh Karimi |
M.Sc. Graduated, Department of Physics, Faculty of Sciences, Razi University, Kermanshah, Iran

Farzad Shirzaditabar |
Assistant Professor, Department of Physics, Faculty of Sciences, Razi University, Kermanshah, Iran

Arash Amirian |
Ph.D. Student, Department of Earth & Planetary Sciences, Macquarie University, Sydney, NSW

Ali Mansoobi |
M.Sc. Graduated, Department of Physics, Faculty of Sciences, Razi University, Kermanshah, Iran


نشانی اینترنتی https://jesphys.ut.ac.ir/article_69156_00d927a64c49810d829d321d096171cb.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1035/article-1035-2277870.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات