این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
رایانش نرم و فناوری اطلاعات
، جلد ۸، شماره ۴، صفحات ۱۷-۲۹
عنوان فارسی
ارائه یک الگوریتم بهبودیافته بهینه سازی گرگ های خاکستری برای زمانبندی جریان کار در محیط محاسبات ابری
چکیده فارسی مقاله
در این مقاله یک الگوریتم فرا ابتکاری بهبودیافته بر اساس الگوریتم فرا ابتکاری گرگ های خاکستری بهمنظور حل مسائل بهینه سازی ارائه می گردد. در الگوریتم پیشنهادی ضعیف ترین گرگ ها از جمعیت حذفشده و با گرگ های دیگری از جمعیت اولیه جاگذاری می شود. انتخاب گرگ های جاگذاری شده بهصورت تصادفی یا بر اساس برازندگی خواهد بود. در این الگوریتم برازندگی مکان ذرات در هر تکرار بررسیشده و در صورت بهبود برازندگی، گرگ ها به سمت هدف حرکت می کنند، در غیر این صورت در آخرین وضعیت مناسب باقی می مانند. این الگوریتم باهدف بهبود عملکرد جستجو در مقابله با مسائل مختلف، افزایش سرعت همگرایی و جلوگیری از گیر افتادن در بهینه محلی ارائهشده است. شبیهسازی در نرم افزار متلب بر روی 23 تابع استاندارد ریاضی بهینه سازی مختلف اجراشده است. با بررسی عملکرد و مقایسه آماری نتایج بهدستآمده از الگوریتم جدید با الگوریتم گرگهای خاکستری پایه و چند الگوریتم دیگر به این نتیجه می رسیم که با تنظیم مناسب پارامترها بهبودهای انجامشده تأثیر بسزایی در عملکرد الگوریتم بر روی توابع مختلف دارند.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
An Improved Grey Wolves Optimization Algorithm For Workflow Scheduling In Cloud Computing Environment
چکیده انگلیسی مقاله
In this paper, An improved meta-heuristic algorithm are proposed based on the meta-heuristic grey wolf algorithm for solving optimization problems. In proposed algorithm, we remove the weakest wolves from the population and put them in with the wolves of the initial population. Wolves selecting can be randomly or on a fitness basis. In this algorithm, the particle positioning accuracy is checked for each repetition, and if the wolf's fitness is improved, they will move towards the target, otherwise they will remain in the last state. This algorithm is designed to improve search performance in solving various issues, increase the rate of convergence and avoid local optimal. Simulation in Matlab software has been implemented on 23 different mathematical optimization functions. By comparing the performance and statistical comparison of the results obtained from the new algorithm with the basic grey wolves algorithm and several other algorithms, we conclude that by proper adjustment of the parameters, the improvements made have a significant effect on the function of the algorithm on different functions.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
علی محمدزاده |
گروه مهندسی کامپیوتر، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران
محمد مصدری |
گروه مهندسی کامپیوتر، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران
فرهاد سلیمانیان قره چپق |
گروه مهندسی کامپیوتر، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران
احمد جعفریان |
گروه ریاضی، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران
نشانی اینترنتی
http://jscit.nit.ac.ir/article_92771_732d16706a516e05115553601c81555c.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/834/article-834-2279332.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات