این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 30 آذر 1404
پردازش علائم و داده ها
، جلد ۱۲، شماره ۴، صفحات ۵۳-۶۵
عنوان فارسی
مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره
چکیده فارسی مقاله
در این مقاله ابتدا مدل بانظارت روش ترکیبی تحلیل مؤلفه اصلی احتمالاتی (SPPCAMM) ارائه شده است. سپس با در نظر گرفتن جریمه نگاشت در یادگیری مدل پیشگو روشی برای شناسایی چهره با استفاده از یک رویکرد کاهش بعد بدون اتلاف ارائه شده است. در روش پیشنهادی ابتدا یک منیفولد زیربنایی محلی خطی با استفاده از مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت از نمونه داده ها به دست می آید. سپس دسته بند ماشین بردار پشتیبان با اعمال جریمه نگاشت به عنوان مدل پیشگوی مذکور با استفاده از این منیفولد محلی خطی آموزش داده میشود. بدین ترتیب از مزایای کاهش بعد در مدل پیشگو استفاده میشود، و در عین حال جلوی از دست رفتن اطلاعات مفید گرفته میشود. برای آموزش و ارزیابی روش پیشنهادی، از پایگاه داده های چهره شناخته شده استفاده شده است. روش استخراج ویژگی گابور بر روی تصاویر به کار گرفته شده است. نتایج آزمایشها نشان میدهد که روش پیشنهادی نسبت به بسیاری از روشهای معمول که کاهش بعد را انجام داده و سپس دسته بند را آموزش میدهند، و همچنین نسبت به روش جریمه نگاشت مبتنی بر مدلهای کاهش بعد خطی و غیرخطی دقت بیشتری دارد.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Supervised Probabilistic Principal Component Analysis Mixture Model in a Lossless Dimensionality Reduction Framework for Face Recognition
چکیده انگلیسی مقاله
In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised probabilistic principal component analysis mixture model. Then, a support vector machine classifier with projection penalty is trained as a predictive model using this local linear manifold. Thus, the predictive model benefits from dimensionality reduction, while it loses minimum amount of useful information. To evaluate the proposed method, we used well-known face recognition databases. Gabor feature extraction method have been applied to these images. The experimental results show that the proposed method has a higher classification accuracy than many of the traditional methods which use predictive models after dimensionality reduction. It also works better than the projection penalty method with linear or nonlinear based dimensionality reduction models.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
سمیه احمدخانی | somayeh ahmadkhani
faculty of computer engineering, university of isfahan, isfahan, iran
اصفهان، دروازه شیراز، خ دانشگاه، دانشکده مهندسی کامپیوتر
سازمان اصلی تایید شده
: دانشگاه اصفهان (Isfahan university)
پیمان ادیبی | peyman adibi
faculty of computer engineering, university of isfahan, isfahan, iran
اصفهان، دروازه شیراز، خ دانشگاه، دانشکده مهندسی کامپیوتر
سازمان اصلی تایید شده
: دانشگاه اصفهان (Isfahan university)
نشانی اینترنتی
http://jsdp.rcisp.ac.ir/browse.php?a_code=A-10-598-1&slc_lang=fa&sid=fa
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1315/article-1315-233338.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
مقالات پردازش تصویر
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات