این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
پردازش علائم و داده ها، جلد ۱۲، شماره ۱، صفحات ۳۳-۴۶

عنوان فارسی یک الگوریتم ردیابی خودرو مبتنی بر ویژگی با استفاده از گروه‌بندی سلسله مراتبی ادغام و تقسیم
چکیده فارسی مقاله ردیابی خودرو یکی از چالشهای مهم در سیستمهای حمل و نقل هوشمند جهت تخمین موقعیت خودرو در فریم بعدی از یک دنباله متوالی تصاویر از ویدئوهای نظارتی است. در این مقاله، یک الگوریتم ردیابی خودرو مبتنی بر ویژگی با استفاده از الگوریتم تخمین زننده ویژگی Kanade-Lucas-Tomasi (KLT) گسترش یافته است. در این الگوریتم، برای جایگزینی خودروها بوسیله ویژگیهای ردیابی شده، یک الگوریتم گروه‌بندی دو مرحله‌ای سلسله مراتبی ادغام و تقسیم پیشنهاد می‌گردد. در الگوریتم گروه‌بندی پیشنهادی با تعریف معیارهایی همچون معیارهای فاصله، گستردگی و همچنین آنالیز حباب نتایج گروه‌بندی اولیه حاصل شده از الگوریتم خوشه‌بندی K-means اصلاح می‌گردد. علاوه براین، جهت تصحیح عملکرد الگوریتم تخمین‌زننده ویژگی KLT و همچنین استفاده مناسبتر از نتایج گروه‌بندی الگوریتم پیشنهادی، یک الگوریتم کارآمد تطبیق گروه‌های ویژگی براساس نقشه ادغام و تقسیم جهت تطبیق گروه ویژگیهای ردیابی شده از یک فریم به فریم بعد پیشنهاد می‌شود. در این الگوریتم تطبیق سعی شده است که با استفاده از ویژگیهای منطبق شده بین دو فریم، خودروهای متناظر در آن دو فریم به درستی تطبیق داده شوند. الگوریتم ردیابی پیشنهادی بر روی ویدئوهای آزمایشی متفاوتی با شرایط نورپردازی متفاوت همچون روز، شب و وجود سایه ارزیابی می‌گردد. نتایج حاصل نشان می‌‌دهد که الگوریتم ردیابی پیشنهادی اکثر چالشهای مهم ردیابی خودرو در کاربردهای عملیاتی سیستمهای حمل و نقل هوشمند را پوشش می‌دهد.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Feature-based Vehicle Tracking Algorithm Using Merge and Split-based Hierarchical Grouping
چکیده انگلیسی مقاله Vehicle tracking is an important issue in Intelligence Transportation Systems (ITS) to estimate the location of vehicle in the next frame. In this paper, a feature-based vehicle tracking algorithm using Kanade-Lucas-Tomasi (KLT) feature tracker is developed. In this algorithm, a merge and split-based hierarchical two-stage grouping algorithm is proposed to represent vehicles from the tracked features. In the proposed grouping algorithm, with defining measures such as distance, spread and also blob analysis, initial grouping results formed by K-means clustering algorithm are refined. Moreover, to modify the performance of KLT tracker and also optimized utilization from grouping results obtained by proposed algorithm, an effective group matching algorithm based on a merging and splitting scheme is employed to match the tracked groups from a frame to the next frame. The proposed tracking algorithm is evaluated on different test videos with various illumination conditions such as day, night and shadow. The obtained results show that our proposed tracking algorithm covers the most challenges of tracking in the ITS applications.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله حسین پورقاسم | hossein pourghassem
najafabad branch, islamic azad university
دانشگاه آزاد اسلامی واحد نجف آباد
سازمان اصلی تایید شده: دانشگاه آزاد اسلامی نجف آباد (Islamic azad university of najafabad)


نشانی اینترنتی http://jsdp.rcisp.ac.ir/browse.php?a_code=A-10-406-1&slc_lang=fa&sid=fa
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1315/article-1315-233362.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده مقالات پردازش تصویر
نوع مقاله منتشر شده کاربردی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات