این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
پژوهش آب در کشاورزی، جلد ۳۰، شماره ۱، صفحات ۷۳-۸۷

عنوان فارسی پیش‌بینی تبخیر-تعرق مرجع هفتگی با استفاده از مدل ترکیبی موجک- فازی عصبی تطبیقی
چکیده فارسی مقاله تبخیر-تعرقمرجع یکی ازمهم‌ترین و مؤثرترین مؤلفه‌ها در بهینه‌سازی مصرف آب کشاورزی و مدیریتمنابع آب می‌باشد. در سال‌های اخیر استفاده از روش‌های هوش مصنوعی و مدل هیبریدی بر پایه موجک در پیش‌بینی پارامترهای هیدرولوژیکی بسیار متداول گشته است. در مطالعه حاضر کاربرد روش‌های ANFIS و موجک- ANFIS در پیش‌بینی تبخیر-تعرق مرجع هفتگی مرجع در ایستگاه‌های همدیدی تبریز، اهواز، بندرعباس و رامسر که دارای اقلیم‌های مختلفی هستند، مورد بررسی و ارزیابی قرار گرفت. بدین منظور یک دوره آماری 20 ساله (1990 الی 2009) که 15 سال (1990-2004) آن برای آموزش و پنج سال انتهایی (2009-2005) جهت آزمون مدل‌های مختلف در نظر گرفته شد. ترکیب‌های مختلفی از داده‌های ورودی (تأخیرهای مختلف) و انواع موجک‌های مادر مورد ارزیابی قرار گرفت. نتایج نشان داد که مدل هیبریدی موجک-ANFIS در هر چهار ایستگاه همدیدی مورداستفاده نسبت به مدل ANFIS دارای توانایی و دقت بالاتری در پیش‌بینی تبخیر-تعرق هفتگی می‌باشد. همچنین نتایج نشان داد که استفاده از تأخیرهای زمانی سالانه در مدل ANFISموجب افزایش دقت گردید درحالی‌که در مدل موجک-ANFISاستفاده از تأخیرهای زمانی سالانه موجب افزایش دقت نمی‌گردد و در برخی موارد حتی موجب کاهش دقت نیز می‌گردد. بررسی انواع موجک‌های مادر نیز نشان داد که موجک‌میر مناسب‌ترین نوع موجک برای پیش‌بینی تبخیر-تعرق مرجع در مقیاس هفتگی می‌باشد. از نتایج تحقیق حاضر می‌توان در برنامه‌ریزی آبیاری مناطق مورد مطالعه استفاده نمود.
کلیدواژه‌های فارسی مقاله سری زمانی، تبدیل موجک، ANFIS،

عنوان انگلیسی Forecasting Weekly Reference Evapotranspiration Using Wavelet-ANFIS Hybrid Model
چکیده انگلیسی مقاله Evapotranspiration is one of the most important components in the optimization of water use in agriculture and water resources management. In recent years, artificial intelligence methods and wavelet based hybrid model have been used for forecasting of hydrological parameters. In the present study, applications of the adaptive network-based fuzzy inference system (ANFIS) and Wavelet-ANFIS models to forecast weekly reference evapotranspiration at the synoptic stations of Tabriz, Ahvaz, Bandar Abbas, and Ramsar were investigated. For this purpose, a 20-year statistical period (1990-2009) was considered: 15 years (1990-2004) for training and the final five years (2005-2009) for testing the various models. Various combinations of input data (various lag times) and different kinds of mother wavelets were evaluated. Results showed that, compared to the ANFIS model, the hybrid model Wavelet-ANFIS had greater ability and accuracy in forecasting weekly evapotranspiration at all of the four synoptic stations. Moreover, the use of yearly lag times in the ANFIS model increased its accuracy. However, in the Wavelet-ANFIS, yearly lags not only did not increase the accuracy of the Wavelet-ANFIS model, but also reduced its accuracy in some cases. Investigation of various kinds of mother wavelets also indicated that the Meyer wavelet was the most suitable mother wavelet for forecasting weekly reference evapotranspiration. Results of this study can also be used for irrigation scheduling in the studied regions.
کلیدواژه‌های انگلیسی مقاله time series, Wavelet transform, ANFIS

نویسندگان مقاله مسعود کرباسی |
استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان.
سازمان اصلی تایید شده: دانشگاه زنجان (Zanjan university)


نشانی اینترنتی http://wra.areo.ir/article_106203_e30edc50c1815d8273fe35a645e6c468.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1318/article-1318-233423.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات