این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مدیریت فناوری اطلاعات، جلد ۱۲، شماره ۲، صفحات ۱۲۳-۱۳۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
چکیده انگلیسی مقاله Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine learning algorithms. In this paper, we have reviewed algorithms for automatic cyberbullying detection in Arabic of machine learning, and after comparing the highest accuracy of these classifications we will propose the techniques Ridge Regression (RR) and Logistic Regression (LR), which achieved the highest accuracy between the various techniques applied in the automatic cyberbullying detection in English and between the techniques that was used in the sentiment analysis in Arabic text, The purpose of this work is applying these techniques for detecting cyberbullying in Arabic.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Bedoor Y. AlHarbi |
Department of Information Technology, College of Computer, Qassim University, Saudi Arabia.

Mashael S. AlHarbi |
Department of Information Technology, College of Computer, Qassim University, Saudi Arabia.

Nouf J. AlZahrani |
Department of Information Technology, College of Computer, Qassim University, Saudi Arabia.

Meshaiel M. Alsheail |
Information Technology Dept., College of Computer, Qassim University, Qassim, Saudi Arabia.

Dina M. Ibrahim |
Department of Information Technology, College of Computer, Qassim University, Saudi Arabia.


نشانی اینترنتی https://jitm.ut.ac.ir/article_75796_38e99c269fdd70ebb3d0484afa88f3f2.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1085/article-1085-2412967.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات