این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 22 آذر 1404
Journal of Sciences Islamic Republic of Iran
، جلد ۳۱، شماره ۲، صفحات ۱۶۵-۱۷۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
چکیده انگلیسی مقاله
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large number of features to attend as they play an essential role in detection efficiency. In this article, we're working on a feature selection method to e-mail spam. This approach is considered a hybrid of optimization algorithms and classifiers in machine learning. Binary Whale Optimization (BWO) and Binary Grey Wolf Optimization (BGWO) algorithms are used for feature selection and K-Nearest Neighbor (KNN) and Fuzzy K-Nearest Neighbor (FKNN) algorithms are applied as the classifiers in this research. The proposed method is tested on the "SPAMBASE" datasets from UCI Machine learning Repesotries and the experimental results revealed the highest accuracy of 97.61% on this dataset. The obtained results indicateed that the proposed method is suitable and capable to provide excellent performance in comparison with other methods.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
Zeinab Hassani |
Department of computer science, Kosar University of Bojnourd, Iran.
Vahid Hajihashemi |
Student Member, IEEE
Keivan Borna |
Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, IRAN
Iman Sahraei Dehmajnoonie |
Science and Research Branch, Islamic Azad University, kerman, Iran
نشانی اینترنتی
https://jsciences.ut.ac.ir/article_74790_492c01a6e24f27578e47b689e7cfdb52.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/513/article-513-2438202.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات