این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 20 آذر 1404
Iranian Journal of Public Health
، جلد ۵۰، شماره ۷، صفحات ۱۳۷۲-۱۳۸۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Evaluation of Multiple Imputation with Large Proportions of Missing Data: How Much Is Too Much?
چکیده انگلیسی مقاله
Background: Multiple Imputation (MI) is known as an effective method for handling missing data in public health research. However, it is not clear that the method will be effective when the data contain a high percentage of missing observations on a variable. Methods: Using data from “Predictive Study of Coronary Heart Disease” study, this study examined the effectiveness of multiple imputation in data with 20% missing to 80% missing observations using absolute bias (|bias|) and Root Mean Square Error (RMSE) of MI measured under Missing Completely at Random (MCAR), Missing at Random (MAR), and Not Missing at Random (NMAR) assumptions. Results: The |bias| and RMSE of MI was much smaller than of the results of CCA under all missing mechanisms, especially with a high percentage of missing. In addition, the |bias| and RMSE of MI were consistent regardless of increasing imputation numbers from M=10 to M=50. Moreover, when comparing imputation mechanisms, MCMC method had universally smaller |bias| and RMSE than those of Regression method and Predictive Mean Matching method under all missing mechanisms. Conclusion: As missing percentages become higher, using MI is recommended, because MI produced less biased estimates under all missing mechanisms. However, when large proportions of data are missing, other things need to be considered such as the number of imputations, imputation mechanisms, and missing data mechanisms for proper imputation.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
| Jin Hyuk Lee
Graduate School of Social Welfare, Yonsei University, Seoul, Republic of Korea
| J. Huber Jr.
Stata Corp, College Station, TX, USA
نشانی اینترنتی
https://ijph.tums.ac.ir/index.php/ijph/article/view/18232
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات